Table of Contents

SNL Directors & Committees 2
Welcome Letter 3
Schedule of Events 4-5
Awards 6
Keynote Lectures 7
Discussion Panels 8-9
General Information 10-11
Slide Sessions 12-13
Poster Schedule 14
Poster Session A 15-17
Poster Session B 18-20
Poster Session C 20-23
Poster Session D 23-26
Poster Session E 26-29
Index 30-34
SNL Directors and Committees

BOARD OF DIRECTORS

Chair: Gregory Hickok, Ph.D., University of California, Irvine, US
Treasurer: Cynthia Thompson, Ph.D., Northwestern University, Chicago, US
Secretary: Murray Grossman, M.D., Ed.D., University of Pennsylvania, Philadelphia, USA
Meeting Liaison: Laura Menenti, Ph.D., University of Glasgow, Glasgow, UK
Chair-Elect: Marta Kutas, Ph.D., University of California, San Diego, US
Treasurer-Elect: Vincent L. Gracco, Ph.D., McGill University, Montréal, Canada
Secretary-Elect: Stefan Heim, Ph.D., RWTH Aachen University, Aachen, Germany
Meeting Liaison-Elect: Manuel Carreiras, Ph.D., Basque Center on Cognition, Brain and Language, San Sebastian, Spain
Past Chair: Steven L. Small, Ph.D., M.D., University of California, Irvine, US
Past Treasurer: Jeffrey Binder, M.D., Medical College of Wisconsin, US
Past Secretary: Howard Nusbaum, Ph.D., The University of Chicago, US
Past Meeting Liaison: Pascale Tremblay, Ph.D., Université Laval, Québec, Canada

NLC 2011 PROGRAM COMMITTEE

Guinevere Eden, Ph.D., Georgetown University, Washington, DC, US
Gregory Hickok, Ph.D., University of California, Irvine, US
Marta Kutas, Ph.D., University of California, San Diego, US
Laura Menenti, Ph.D., University of Glasgow, Glasgow, UK
Colin Phillips, Ph.D., University of Maryland, College Park, MD, US
Steven L. Small, Ph.D., M.D., University of California, Irvine, US
Pascale Tremblay, Ph.D., University of Trento, Trento, Italy

2011 NOMINATION COMMITTEE

David Poeppel, Ph.D., Chair, New York University, US
Sonja Kotz, Ph.D., Max Planck Institute, Germany
Cathy Price, Ph.D., Welcome Trust Centre for Neuroimaging, University College London, UK

NLC 2011 REVIEW COMMITTEE

Daniel Acheson, Ph.D.
Jose Aleman Banon
Diogo Almeida, Ph.D.
Venu Balasubramanian, Ph.D.
Deryk Beal, Ph.D.
Angeline Blackburn
Arielle Borovsky, Ph.D.
Heather Bortfeld, Ph.D.
Veronique Boulenger, Ph.D.
Shanqing Cai
Manuel Carreiras, Ph.D.
Jungwon Choy, Ph.D.
Tristan Davenport
Dirk-Bart Den Ouden, Ph.D.
Isabelle Deschamps, Ph.D.
Nai Ding
John Drury, Ph.D.
Julia Evans, Ph.D.
Yasmeen Faroqi-Shah, Ph.D.
Ecelina Fedorenko, Ph.D.
Inna Fishman, Ph.D.
Xuefei Gao, Ph.D.
Krystyna Grabski
Roeland Hancock
Stefan Heim, Ph.D.
Greg Hickok, Ph.D.
Masako Hironi, Ph.D.
Hsu-Wen Huang, Ph.D.
Annika Hulten, Ph.D.
So-One Huang
Xiaoming Jiang, Ph.D.
So-Hee Kim
Pia Knoeferle, Ph.D.
Saloni Krishnan
Berk Kroeger, Ph.D.
Ellen Lau, Ph.D.
Hon Wah Lee
Minna Lehtonen, Ph.D.
Christiania Leonard, Ph.D.
Ran Liu
Anna MacDonald, Ph.D.
Jennifer Mack, Ph.D.
Mandy Maguire, Ph.D.
Evguenia Malaia, Ph.D.
Laura Menenti, Ph.D.
Daniel Mirman, Ph.D.
Philip Monahan, Ph.D.
Caroline Niziolek, Ph.D.
Polly O’Rourke, Ph.D.
Barbara Pautschek-Lipinska, Ph.D.
Jonathan Peelle, Ph.D.
Tepriq Piquado, Ph.D.
Kate Prince Revill, Ph.D.
Alice Mado Proverbio, Ph.D.
Zhenghan Qi
Ariane Rhone
Katharina Sassi, Ph.D.
Mathias Scharinger, Ph.D.
Tatiana Schnur, Ph.D.
Teres Schubert
Katrien Segal
Valerie Shafer, Ph.D.
Roma Stuigzdaite, Ph.D.
Baj Stewaert, Ph.D.
Linnea Stockall, Ph.D.
Thomas Thesen, Ph.D.
Malathi Thothathiri, Ph.D.
Debra Titone, Ph.D.
Pascale Tremblay, Ph.D.
Kyrrana Tsapikni, Ph.D.
Monica Wagner, Ph.D.
Yapeng Wang, Ph.D.
Roel Willems, Ph.D.
Stephen Wilson, Ph.D.
Edward Wlotko, Ph.D.
Zoe Woodhead, Ph.D.
Jie Yang, Ph.D.
Ruo-Xiao YANG
Yan Yu
Zude Zhu, Ph.D.
Welcome to NLC 2011

Welcome to the Third Annual Neurobiology of Language Conference (NLC) and the first NLC to be formally run by our new organization, the Society for the Neurobiology of Language (SNL)! You may have noticed some growing pains over the last year as we worked to coordinate websites, rules for Society membership, conference abstract submission, and conference registration systems. It turns out that setting up and managing a new society and planning an annual meeting is a lot work and a bit overwhelming for a group of mere neuroscientists. Happily we were able to secure the help of a team of professionals – Tara Miller Events (TME), the same management group that runs the Cognitive Neuroscience Society, among others. TME is helping us with management and planning so that we can spend more time doing what we do best – fighting for grant money and arguing about the neurobiology of language.

By all accounts, the Neurobiology of Language Conference has been a resounding success. In just a couple of years, the NLC has emerged as the primary meeting in our field. We can thank Steve Small and his group (i.e., Pascale Tremblay) for getting the ball rolling. But now with the formation of our new Society and the realization that operating a quasi-satellite to SfN is not feasible in the long term, we are beginning a new phase in the development of our organization. We are growing up – and that’s where you come in. Although it may seem like meetings and societies exist independently of the scientists and students who decide (or not) to partake in what these entities have to offer, this is not the case. Meetings and societies exist because people like you and me recognize a need and decide to put in the effort to make them happen. What this means is that if you value what we all have created, it is your responsibility to keep it going by participating in and promoting the effort. You don’t have to run for office. There are lots of ways to participate: join the Society, nominate and vote, submit abstracts and attend the meeting, provide feedback and suggestions, tell your friends and colleagues about how cool we are. You get the idea. This is our Society and annual meeting. Let’s work together as a community to help it grow and prosper. It won’t do it on its own.

I would personally like to thank the SNL Board of Directors, the Program Committee, the Nomination Committee, as well as Shauney, Shawna, and Tara at TME – all of whom worked very hard to pull things together. I would also like to thank our invited speakers for accepting our invitation. It is important to acknowledge NIDCD who provided funding to support our invited speakers and provide, for the first time, merit and travel scholarships.

On behalf of the Board, welcome to Annapolis!

Gregory Hickok

Chair, Society for the Neurobiology of Language
Schedule of Events

Wednesday, Nov. 9

4:00 - 7:00 pm Pre-Registration Check-in and Onsite Registration
Capitol A Pre-Function

Thursday, Nov. 10

7:00 am - 6:00 pm Pre-Registration Check-in and Onsite Registration
Capitol A Pre-Function

7:30 - 8:45 am Continental Breakfast
Capitol A Pre-Function

8:45 - 9:00 am Opening Remarks: Greg Hickok, Chair
Capitol Ballroom B & D

9:00 - 10:00 am Keynote: Troy Hackett
Primate Auditory Cortex: Principles of Organization and Future Directions
Capitol Ballroom B & D

10:00 - 10:30 am Coffee Break
Capitol Pre-Function

10:00 - 11:30 am Poster Session A
Speech Perception, Prosody, Acquisition, Manual & Sign Language, Pathology, Speech Production
Senate, Capitol C, and Capitol C Pre-Function

11:30 am - 12:50 pm Slide Session A
Capitol Ballroom B & D

12:50 - 2:00 pm Lunch Break
on your own

2:00 - 3:20 pm Slide Session B
Capitol Ballroom B & D

3:20 - 3:50 pm Coffee Break
Capitol Pre-Function

3:20 - 4:50 pm Poster Session B
Speech Perception, Prosody, Multilingualism, Reading & Writing, Social & Emotional Processing
Senate, Capitol C, and Capitol C Pre-Function

4:50 - 6:10 pm Discussion Panel: David Poeppel & Sophie Scott
Mechanisms underlying the lateralisation of speech perception
Capitol Ballroom B & D

6:15 - 8:15 pm Poster Session C and Welcome Reception
Multilingualism, Reading & Writing, Social & Emotional Processing, Acquisition, Manual & Sign Language, Pathology, Speech Production
Senate, Capitol C, and Capitol C Pre-Function
Friday, Nov. 11

7:00 am - 6:45 pm
Pre-Registration Check-in and Onsite Registration
Capitol A Pre-Function

7:30 - 8:45 am
Continental Breakfast
Capitol A Pre-Function

8:50 - 9:00 am
Opening Remarks: Greg Hickok, Chair
Capitol Ballroom B & D

9:00 - 10:00 am
Keynote: Katrin Amunts
Broca's region – architecture and novel organizational principles
Capitol Ballroom B & D

10:00 - 10:30 am
Coffee Break
Capitol Pre-Function

10:00 - 11:30 am
Poster Session D
Anatomy, Cognitive & Executive Processing, Syntax, Conceptual/Semantic/Discourse Processing
Senate, Capitol C, and Capitol C Pre-Function

11:30 am - 12:50 pm
Slide Session C
Capitol Ballroom B & D

12:50 - 2:00 pm
Lunch Break
on your own

2:00 - 3:20 pm
Slide Session D
Capitol Ballroom B & D

3:20 - 3:50 pm
Coffee Break
Capitol Pre-Function

3:20 - 4:50 pm
Poster Session E
Anatomy, Cognitive & Executive Processing, Syntax, Conceptual/Semantic/Discourse Processing
Senate, Capitol C, and Capitol C Pre-Function

4:50 - 5:20 pm
Business Meeting
Capitol Ballroom B & D

5:20 - 6:40 pm
Discussion Panel: Alfonso Caramazza & Friedemann Pulvermuller
What is the Role of the Motor System in Action Concepts?
Capitol Ballroom B & D
Awards

The Society for the Neurobiology of Language (SNL) awards several Travel Awards funded by the National Institute on Deafness and Communication Disorders (NIDCD) to help cover travel and registration costs for the 2011 Neurobiology of Language Conference (NLC) in Annapolis, Maryland.

ABSTRACT MERIT AWARDS

Abstract Merit Awards were given to the two students and two postdocs submitting the highest ranked abstracts.

The SNL 2011 Merit Awards were given to:

- **Elisabeth Karuza**, The University of Rochester, NY, US
- **Hannah Snyder**, University of Colorado at Boulder, US
- **Siyuan Liu**, National Institutes of Health, National Institute on Deafness and Other Communication Disorders, US
- **Michael Wolmetz**, Johns Hopkins University, MD, US

TRAVEL AWARDS

12 Travel awards were given to students and postdocs to help defray the costs of attending the meeting.

The SNL 2011 Travel Awards were given to:

- **Teon Brooks**, New York University, US
- **Brea Chouinard**, University of Alberta, Canada
- **Kimiko Domoto-Reilly**, Massachusetts General Hospital and Harvard Medical School, US
- **Sarah Grace Hudspeth**, University of South Carolina, US
- **Nina Hsu**, University of Pennsylvania, US
- **Shinae Kang**, University of California, Berkeley, US
- **Mikel Lizarazu**, Basque Center on Cognition, Brain and Language (BCBL), Spain
- **Aya Meltzer-Asscher**, Northwestern University, US
- **Takenobu Murakami**, Goethe-University, Frankfurt, Germany
- **Tepring Piquado**, University of California, Irvine, US
- **Rubén Torres**, National Autonomous University of Mexico, Mexico
- **Jean Mary Zarate**, New York University, US
Keynote Lectures

PRIMATE AUDITORY CORTEX: PRINCIPLES OF ORGANIZATION AND FUTURE DIRECTIONS
Thursday, November 10, 9:00 – 10:00 am, Capitol Ballroom B & D

Chair: Greg Hickok, University of California, Irvine, US
Speaker: Troy Hackett, Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, USA and Department of Psychology, Vanderbilt University, US

Every major region of the brain contains areas that are involved in the processing of sound, and each of these areas is thought to perform unique functional roles. After decades of inquiry, however, we have not been able to determine even the primary function of any of these areas. In part, progress has been limited by methodological and technological constraints, especially for studies of the human brain. As a result, much of what is known about central auditory processing depends on studies in species chosen as model systems. As an animal model of central auditory processing, nonhuman primates play an important role in bridging the findings from research conducted in humans with those derived from other species. But, like all animal models, the nonhuman primate is unavoidably incomplete as a model system for understanding human audition. The expanded auditory-related capabilities of humans, including language, make use of extensive adaptations and elaborations of brain structures and associated networks – most of which are waiting to be discovered. This expansion is most obvious in the cortex. Compared to the subcortical auditory pathway, which appears to be more highly conserved across species, the organization of auditory areas in cortex varies so widely that the establishment of homologous areas is currently limited to only one or two primary fields. Yet, amidst this diversity, a growing number of shared anatomical and physiological features are being identified. These common ‘principles of organization’ are not only a means of comparing and contrasting model species, but their extension to studies of the human brain is also moving us closer to establishing a working model of human auditory cortex that can be tested and refined. These efforts will provide an improved foundation for advanced functional imaging and electrophysiological studies of normal and impaired auditory processing both now and into the future.

BROCA’S REGION – ARCHITECTURE AND NOVEL ORGANIZATIONAL PRINCIPLES
Friday, November 11, 9:00 – 10:00 am, Capitol Ballroom B & D

Chair: Murray Grossman, University of Pennsylvania, Philadelphia, US
Speaker: Katrin Amunts, Institute of Neuroscience and Medicine, Research Center Juelich, Germany and Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany

Different aspects of language processing are associated with localized activations in specific brain regions and networks. Modern neuroimaging has opened the possibility to analyse language in the human brain during experimentally well-controlled tasks. However, the microstructural correlates of such activations and their relationship are not well understood. Apart from the classical concept of two language centres, Broca’s and Wernicke’s, there was little progress in the last decades with respect to their structural segregation, localization and extent, and distinctiveness as “language” region. Evidence will be provided that the segregation of Broca’s region is more complex than previously assumed. The talk will show how the inferior frontal cortex has been analysed using multivariate statistical tools for the definition of cortical borders. Cytoarchitectonic and receptorarchitectonic analysis of six transmitter receptors show a more detailed parcellation of areas 44 and 45, but also indicate a new landscape of areas in neighbouring regions of the frontal operculum, precentral gyrus and inferior frontal sulcus. The relevance of such new parcellation will be discussed with respect to different aspects of language function and dysfunction.
Discussion Panels

MECHANISMS UNDERLYING THE LATERALISATION OF SPEECH PERCEPTION
Thursday, November 10, 4:50 - 6:10 pm, Capitol Ballroom B & D

Chair: Jeff Binder, Department of Neurology, Medical College of Wisconsin, US

Speakers: David Poeppel, Department of Psychology, New York University, US and Sophie Scott, Institute of Cognitive Neuroscience, University College London, UK

For the past dozen years, in part stimulated by the availability of non-invasive recording techniques, there has been increasing research on the brain mechanisms underlying speech perception. Several themes have emerged that have led to consensus and debate. One major generalization about which there is consensus is that there exist concurrent processing pathways responsible for different aspects of speech perception. However, the organization and relative lateralization of these pathways remain vigorously debated. While the classic neuropsychological approach to language processing has emphasized a left dominance for language processing, controversies exist as to the extent to which this is true, and also around the mechanisms that might underlie any such asymmetries. On one hand, generic computational operations have been suggested to underlie specialization, at least in part, including temporal strategies. On the other hand, more functional differences between the two hemispheres have been identified as relevant to candidate asymmetries in language processing. There is also considerable debate about the levels of analysis that are relevant to brain asymmetry. In this debate we will try to lay out a few major findings and arguments for and against these positions.

Funding Opportunities at NSF

William Badecker, a program officer in NSF’s Linguistics Program, will be on-hand on Friday to discuss funding and job opportunities available at NSF. A sign-up sheet will be located at the Registration desk.
WHAT IS THE ROLE OF THE MOTOR SYSTEM IN ACTION CONCEPTS?
Friday, November 11, 5:20 - 6:40 pm, Capitol Ballroom B & D

Chair: Greig de Zubicaray, School of Psychology, University of Queensland, Brisbane, Australia

Speakers: Alfonso Caramazza, Cognitive Neuropsychology Laboratory, Harvard University, US and Center for Mind/Brain Sciences, University of Trento, Italy and Friedemann Pulvermüller, Cognition and Brain Sciences Unit, Medical Research Council, UK and Brain Language Lab, Free University of Berlin

ASPECTS OF THE REPRESENTATION AND ORGANIZATION OF CONCEPTUAL KNOWLEDGE
Alfonso Caramazza - Many reports claim to provide evidence for the view that concepts are no more than recapitulations of sensory-motor experiences. However, those claims do not withstand close scrutiny: the proffered experimental results do not allow unambiguous inferences about the nature of conceptual representations and the theoretical proposals lack specificity. I will outline an alternative proposal that assumes distinct, progressively more abstract levels of representation of action and object knowledge.

NEURONAL MECHANISMS FOR SEMANTIC KNOWLEDGE ABOUT ACTION, ABSTRACT-ACTION, PERCEPTION, EMOTION, RECOMBINATION, AND CONSTRUCTIONS. – WHAT’S LEFT FOR THE SYMBOL BOX? Friedemann Pulvermüller - Some words are used to speak about objects and actions and one may therefore propose that the brain mechanisms linking symbol (form) and meaning tie neuronal circuits for actions and objects to linguistic cell assemblies. This view has gained plausibility from studies documenting focal and rapid activation of sensorimotor brain systems reflecting the meaning of presented symbols, along with studies documenting an influence of sensorimotor activation or lesion on the processing of symbols. This research shows that, at least for some symbols, embodied sensorimotor systems and representations are semantically relevant.

However, not all words are used to speak about specific objects and actions. Some words are so abstract in meaning that an “embodied” approach to their semantics seems to be prone to fail. Therefore, meaning has been proposed to require a semantic-conceptual symbol box dealing with the really difficult stuff, especially with abstract words, such as “beautiful”, “free” or “dread”. In a symbolic approach, each concept and meaning has its abstract symbolic representation. “Dread” can be learned because we connect the word with this abstract concept – which is possibly given to us. I will show that this approach to meaning is flawed. Even if we had an inborn concept of “dread”-ness, how should one know which word to connect with it? In contrast, an explanation of the meaning of abstract words such as “dread” requires that the emotions such words are used to speak about can be expressed by actions. The theoretical argument will be bolstered by brain imaging evidence. Without such action-grounded meaning, abstract symbolic meaning cannot be explained. Abstract meaning resulting from combinatorial information and construction storage will also be addressed, as for example in the case of “grasping ideas” or “cooling down”. A range of concrete sensorimotor, affective-emotional, combinatorial and construction-related brain mechanisms are available for mechanistically explaining meaning and concepts. So is a semantic symbol box still needed?
General Information

ABSTRACTS
The poster and slide abstracts can be found in the PDF which is downloadable from the neurolang.org website.

ATM
Located near the Annapolis Grill

BAGGAGE CHECK
All Attendees, even those not staying at the Westin, are welcome to check their bags at the front desk or with the valet.

BUSINESS CENTER
The Business Center is located on P1 level and is open 24 hours a day.

CERTIFICATE OF ATTENDANCE
To receive a Certificate of Attendance, please visit the registration desk. If you require any amendments, we will be happy to email/mail a copy after the meeting.

CONTACT US
To contact us onsite, visit the Registration Desk in the Capitol A Pre-Function, or send an email to Info@neurolang.org. We will respond to your email at our soonest opportunity.

DISCLAIMER
The SNL Program Committee reserves the right to make changes to the meeting program at any time without notice. This program was correct at the time of printing.

FITNESS CENTER
The Fitness Center is located on P1 level, next to the Business Center. The Fitness Center is open 24 hours a day and can be accessed using a guest key. There is also a small indoor pool, open Monday – Friday, 6:00 am – 10:00 am and 4:00 pm – 10:00 pm; and Weekends, 8:00 am – 10:00 pm.

FOOD SERVICE
Complimentary food and beverage service is available to all registered attendees at the following times in Capitol A Pre-Function.

Thursday
Continental Breakfast, 7:30 – 9:00 am
Coffee Break, 10:00 – 10:30 am
Coffee Break & Light Snack, 3:20 – 3:50 pm
Welcome Reception, 6:15 – 8:15 pm

Friday
Continental Breakfast, 7:30 – 9:00 am
Coffee Break, 10:00 – 10:30 am
Coffee Break & Light Snack, 3:20 – 3:50 pm

HOTEL OUTLETS
The hotel restaurant, Azure, is located on the Lobby level. Hours: Monday – Friday, 6:00 am – 2:00 pm for breakfast and lunch; Weekends: 7:00 am – 2:00 pm. Light Fare can also be ordered in the Lobby Lounge from 2:00 – 11:00 pm. Room service is available 6:30 am – 11:00 pm.

FUTURE MEETING
NLC 2012 will be held in San Sebastian, Spain, from October 25-27, 2012.

LOST & FOUND
Please check with the NLC Registration Desk for items lost and found.

MESSAGES
A bulletin board will be available for messages and job postings near the NLC Registration Desk in Capitol A Pre-function.

MOBILE PHONES
Attendees are asked to silence their mobile phones when in sessions.

NAME BADGES
For security purposes, all attendees are asked to wear their name badges to all sessions and social functions. Entrance into sessions is restricted to registered attendees only. If you misplace your name badge, please go to the Registration Desk for a replacement.

ONSITE MEETING REGISTRATION
The NLC Registration Desk is located in Capitol A Pre-function. The Registration Desk hours are:

 Wednesday, November 9, 4:00 – 7:00 pm
 Thursday, November 10, 7:00 am – 6:00 pm
 Friday, January 28, 7:00 am – 6:00 pm

PARKING
Self-parking is available for $1.25/hour, up to $5.00 a day. Valet parking is $10.00 for day parking and $23.00 for overnight parking. Self-parking cannot be put on your hotel bill and must be paid for every time you exit the garage (located beneath the hotel).

PHOTOGRAPHY AND VIDEOTAPING
Photography, audiotaping, video recording, digital taping or any other form of duplication is strictly prohibited in the sessions and poster areas.
SLIDE SESSIONS
An LCD projector (e.g., for PowerPoint presentations) will be provided in the talk room; however, computers will NOT be provided. Presenters must bring their own computers and set them up BEFORE the start of the session in which they are presenting. A switch box will be provided to allow several computers to be connected to the LCD projector in a room. Presenters are strongly encouraged to arrive in their scheduled room a minimum of 30 minutes before their talk so that they know how to set up their equipment.

SMARTPHONE APP
NLC 2011 has a Smartphone application (Grupio) that makes attending NLC 2011 a lot more convenient and fun! It provides easy access to event information, schedules, maps, speaker information and a whole lot more to all Attendees.

iPhone, download “Grupio” from the app store.

Android, download “Grupio” from Android Market, look for the SNL event listed.

Blackberry, (Storm and Torch) only if you have a touch screen device with OS 5.0 and above.

No Smartphone? No problem – you can use the mobile application website at www.grupio.com/snl2011

TRANSPORTATION
Airport Transportation – Discounted transportation is available with SuperShuttle for transportation between Baltimore Washington International (BWI), Dulles (IAD), and Reagan National (DCA) airports and the Westin Annapolis. Discounted rates: $2.00 off one-way, $5.00 off round-trip fare. Book more than one reservation at the same time will result in greater savings. For reservations, call 1-800-BLUE-VAN and use code ZXVUA.

Transportation to SfN – For those traveling on to SfN, we will offer a complimentary bus service from the Westin Hotel to the New Carrollton Metro. SfN attendees can take the metro rail directly into DC. This transportation will be provided by Huber’s Bus Service. Motor coaches will be available in front of the hotel at the following times:

- Friday, Nov 11: 6:30 pm, 7:45 pm, 9:00 pm and 10:15 pm
- Saturday, Nov 12: 7:30 am, 8:45 am, 10:00 am, and 11:15 am

SAVE THE DATE!
NLC 2012

October 25-27 2012
San Sebastian, Spain
Slide Sessions

Slide Session A
Thursday, November 10 11:30 am - 12:50 pm
Capitol Ballroom B & D

Chair: Pascal Tremblay, Université Laval

A1 11:30 am
Did auditory localization drive the development of complex speech? Lenhardt, M, Virginia Commonwealth University, Richmond, VA

A2 11:50 am

A3 12:10 pm
Auditory discrimination in illiterates: How effective is alphabetization? Schaadt, G. (1), Pannekamp, A. (1), and van der Meer, E. (1) 1. Humboldt University of Berlin, Berlin, Germany

A4 12:30 pm
Cortical mechanisms of selective listening in a multi-speaker environment Mesgarani, N.(1,2), Chang, E.(1,2). 1. University of California, San Francisco, CA US. 2. Keck Center for Integrative Neuroscience

Slide Session B
Thursday, November 10 2:00 - 3:20 pm
Capitol Ballroom B & D

Chair: Vincent Gracco, McGill University

B1 2:00 pm
The role of task-specific feedback mechanisms in the categorical perception of speech: A Kalman-filter driven Granger analysis of MRI-constrained MEG/EEG data Gow, D (1,2,3), Sachdeva, R. (1,2), Ahlfors, S. (1,2). 1. Massachusetts General Hospital, Boston, MA, US. 2. Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, US. 3. Salem State University, Salem, MA, US.

B2 2:20 pm
How we store the sounds of words: Testing the neurocognitive predictions of abstract and exemplar models of spoken word recognition Wolmetz, M. (1), Wilson, C. (1), and Rapp, B. (1). 1. Johns Hopkins University, Baltimore, MD, US.

B3 2:40 pm
Can irony reveal extensive Theory of Mind activation? Spotorno, N. (1), Koun, E. (1), Prado, J. (2), Van Der Henst, J.B. (1), and Noveck, I. (1). 1. Laboratory L2C2, CNRS (FRE3406), Bron, France. 2. Northwestern University, Evanston, IL, US.

B4 3:00 pm
Slide Session C

Friday, November 11 11:30 am - 12:50 pm
Capitol Ballroom B & D

Chair: Cynthia Thompson, Northwestern University

C1 11:30 am
Modality Independent Decoding of Semantic Information from the Human Brain Simanova I. (1,2), Oostenveld R. (2), Hagoort P. (1,2), van Gerven M. (2,3). 1. Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands. 2. Donders Institute for Brain, Radboud University Nijmegen, The Netherlands. 3. Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands

C2 11:50 am
Theta coherence as a mechanism for long-range network formation for lexical-semantic processing Mellem, M. S. (1), Medvedev, A. V. (1), Friedman, R. B., (1). 1. Georgetown University Medical Center, Washington, DC.

C3 12:10 pm
Predicting language: MEG evidence for lexical preactivation Dikker, S. (1,2) and Pykkänen, L. (2). 1. Sackler Institute for Developmental Psychobiology, Weill-Cornell Medical College, NY, US. 2. New York University, NY, US.

C4 12:30 pm
Parkinson’s disease selectively disrupts processing of action verbs Fernandino, L., Conant, L.L., Binder, J.R., Blindauer K., Hiner, B., Spangler K., Desai, R.H. The Medical College of Wisconsin, Department of Neurology, Milwaukee, WI, US.

Slide Session D

Friday, November 11 2:00 - 3:20 pm
Capitol Ballroom B & D

Chair: Ghislaine Dehaene-Lambertz, CNRS

D1 2:00 pm
Neurotransmitter receptor distribution in Broca’s area and the posterior superior temporal gyrus Bacha-Trams, M. (1,2), Zilles, K. (2,4), Amunts, K. (2,3) and Friederici, A.D. (1). 1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. 2 Institute of Neuroscience and Medicine, Research Center Juelich, Germany. 3 University Hospital Aachen, Germany. 4 Heinrich Heine University Duesseldorf, Germany

D2 2:20 pm
The role of competitive neural inhibition in language production: Insights from the effects of trait anxiety on selecting among competing words Snyder, H. R., Kaiser, R., Whisman, M. and Munakata, Y. University of Colorado at Boulder, CO, US

D3 2:40 pm

D4 3:00 pm
Functional connectivity at rest predicts word comprehension after stroke Wei, T. (1), Hamilton, C. (1), Ellmore, T. (2), Schnur, T. (1). 1 Rice University, Houston, TX, US. 2. The University of Texas Medical School, Houston, TX, US.
Poster Schedule

Poster sessions are scheduled on Thursday, November 10 and Friday, November 11. Poster sessions are 1½ hours and presenting authors are expected to be present the entire time. Posters are located in the Senate room, Capitol C ballroom and the pre-function space outside of Capitol C.

You may post your materials on the board assigned to you starting at the scheduled “Set-up Begins” time shown below. Please note that any posters not removed by “Take-down Complete” time will be discarded. The doors will close and lock for the evening at 8:45 pm on Thursday. There is no re-entry after this time. Do not leave personal items in the poster room.

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Set-up Begins</th>
<th>Session Begins</th>
<th>Session Ends</th>
<th>Take-down Complete</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Speech Perception, Prosody, Acquisition, Manual & Sign Language, Pathology, Speech Production</td>
</tr>
<tr>
<td>THURSDAY, NOVEMBER 10</td>
<td>8:00 am</td>
<td>10:00 am</td>
<td>11:30 am</td>
<td>1:30 pm</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Speech Perception, Prosody, Multilingualism, Social & Emotional Processing, Reading & Writing</td>
</tr>
<tr>
<td>THURSDAY, NOVEMBER 10</td>
<td>1:30 pm</td>
<td>3:20 pm</td>
<td>4:50 pm</td>
<td>5:30 pm</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multilingualism, Reading & Writing, Pathology, Manual & Sign Language, Speech Production, Acquisition</td>
</tr>
<tr>
<td>THURSDAY, NOVEMBER 10</td>
<td>5:30 pm</td>
<td>6:15 pm</td>
<td>8:15 pm</td>
<td>8:30 pm</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Syntax, Cognitive and Executive Processing, Anatomy, Conceptual/ Semantic/Discourse Processing</td>
</tr>
<tr>
<td>FRIDAY, NOVEMBER 11</td>
<td>8:00 am</td>
<td>10:00 am</td>
<td>11:30 am</td>
<td>1:30 pm</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Syntax, Cognitive and Executive Processing, Anatomy, Conceptual/ Semantic/Discourse Processing</td>
</tr>
<tr>
<td>FRIDAY, NOVEMBER 11</td>
<td>1:30 pm</td>
<td>3:20 pm</td>
<td>4:50 pm</td>
<td>5:30 pm</td>
<td></td>
</tr>
</tbody>
</table>
Poster Sessions

Poster Session A
Thursday, November 10 10:00 - 11:30 am
Senate, Capitol C, and Capitol C Pre-Function

SPEECH PERCEPTION

A1 Different spatial scales of categorical phoneme processing in Broca’s area and the supramarginal gyrus: feasible evidence for a posterior-to-anterior gradient in pre-lexical speech processing Lee, Y.-S. (1), Granger, R. (2), Raizada, R. (3); 1. University of Pennsylvania, Philadelphia; 2. Dartmouth College, Hanover, NH; 3. Dartmouth College, Neukom Institute, Hanover, NH

A2 The latency of lexical access in visual and spoken word recognition Lewis, G. (1), Marantz, A. (1); 1. New York University, NY

A5 Phonological underspecification in the mental lexicon: an investigation of the P2 ERP component and lexical decision latency Tanigawa, N. (1), Rahni, R. (1), Kim, J. J. (1), Geisler, M. W. (1); 1. San Francisco State University, CA

A6 Enhancing left lateralization of posterior temporal cortex using tDCS shifts perception on a voice-onset time continuum Turkeltaub, P.E. (1,2), Benson, J. (2), Hamilton, R.H. (2), and Coslett H.B. (2); 1. Georgetown University, Washington, DC; 2. University of Pennsylvania, Philadelphia

A7 Brain Signature of Comprehending Sentences with Acoustic Noise: An fMRI study Alexei A. Smaliy (1), Melody S. Berens (1), Joseph Dien (1), Valerie Karuzis (1), Suzanne Freynik (1), Peter Oshius (1), Henk J. Haarmann (1); 1. University of Maryland

A8 ERP measures response to violations of voicing agreement constraint Chandee, J. (1), Hestvik, A. (1); 1. University of Delaware, Newark, DE

A9 Responses to sub-categorical mismatches in auditory word-recognition following picture contexts in native English speakers Datta, H. (1), Zevin, J. (1); 1. Sackler Institute of Developmental Psychobiology, Weill Cornell Medical College, New York

A10 Cortical processing of continuous speech in auditory cortex during monaural and dichotic listening Nai Ding (1), Jonathan Z. Simon (1); 1. University of Maryland, MD

A16 Human brainstem plasticity to linguistic pitch patterns: distinct effects of auditory context and training Chandrasekaran, B. (1), Skoe, E. (2), Wong, P.C.M. (2), Kraus, N. (2); 1. Institute for Neuroscience, The University of Texas at Austin; 2. Northwestern University, Evanston, IL

A17 Human inferior colliculus response to pitch patterns predict auditory learning success Bharath Chandrasekaran (1), Nina Kraus (2), Patrick C.M. Wong (2); 1.Institute for Neuroscience, The University of Texas at Austin; 2. School of Communication, Northwestern University, Evanston, IL

A19 Rapid use of sentential context in spoken word recognition by young and older adults Recilli, K.P. (1). 1. Georgia State University/Georgia Institute of Technology, Atlanta, GA

A20 Phonological therapy in aphasic patients strengthens top-down connections within the auditory system Schofield, T. (1), Penny, W. (1), Stephan, K. (1,2), Crinion, J. (3), Thompson, A. (4), Price, C. (1,4). 1. Wellcome Trust Centre for Neuroimaging, University College London; 2. University of Zurich, Switzerland; 3. Institute of Cognitive Neuroscience, University College London; 4. Institute of Neurology, University College London

A21 Acoustic and phonemic factors determine the amplitude and laterality of mismatch fields in humans Teki, S. (1,2), Barnes, G.R. (2), Penny, W. (2), Griffiths, T.D. (1,2), Jeff, A.P. (3). 1. Newcastle Auditory Group, Medical School, Newcastle University, Newcastle-upon-Tyne, UK; 2. Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London; 3. Institute of Cognitive Neuroscience, University College London; 4. Institute of Neurology, University College London

A24 A spontaneous ability of songbirds to discriminate syntactic rules in auditory information Abe, K. (1,2), Watanabe, D. (1,3). 1. Kyoto University, Graduate School of Biostudies, Kyoto, Japan; 2. PRESTO, Japan Science and Technology Agency, Saitama, Japan; 3. Kyoto University, Faculty of Medicine, Kyoto, Japan

PROSODY

ACQUISITION

A27 Word learning from context: accuracy and reaction time in judgments of congruency Jackson, A. (1); Bolger, D.J. (1). 1. University of Maryland, MD

A29 Effects of Frequency and Imageability on N400 amplitudes in Adolescents with and without Specific Language Impairment Ziemore, M.L. (1,2), Pohl, L. (1,2), Burns, E.L. (2), Evans, J.L. (1,2). 1. SDSU/UCSD Joint Doctoral Program, San Diego, CA; 2. San Diego State University, San Diego, CA

MANUAL & SIGN LANGUAGE

A33 The neural processing of co-verbal gestures: The relevance of content and abstractness Straube, B. (1), Nagel, A. (1), Kircher, T. (1). 1. Philippus-Universität Marburg, Germany

PATHOLOGY

A35 An aphasic patient with damage to the left STS but preserved McGurk effect Baum, S. (1,4), Nath,
A35 Impaired auditory object processing in residual Landau-Kleffner Syndrome Stefanatos, C.A. (1) and DeMarco, A.T. (1); 1. Temple University, Philadelphia, PA

A36 Comparing auditory-motor interaction in static and time-varying articulation between stutterers and normal speakers Cai, S. (1, 3), Beal, D.S. (2), Ghosh, S.S. (1, 3), Tiede, M.K. (1), Guenther, F.H. (2, 3), Perkell, J.S. (1, 2, 3); 1. Massachusetts Institute of Technology, Cambridge, MA; 2. Boston University, Boston, MA; 3. Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA

A37 Auditory feedback masking in apraxia of speech: Neural correlates of increased speech fluency Jacks, A. (1), Haley, K.L. (1), Roth, H.L. (1); 1. The University of North Carolina at Chapel Hill

A38 Neural substrates of short and long-term repetition priming of naming in aphasia MacDonald, A.D. (1), Heath, S. (1), McMahon, K.L. (1), Angwin, A. (1), Nickels, L. (4), and Copland, D.A. (1); 1. The University of Queensland, Brisbane, Australia; 2. Macquarie University, Sydney, Australia

A42 ERP evidence for both similar and distinct cortical networks underlying semantic integration in adolescents with Specific Language Impairment Polse, L. (1, 2), Sizemore, M.L. (1, 2), Burns, E.L. (2), Evans, J.L. (1, 2); 1. San Diego State University/University of California San Diego Joint Doctoral Program, San Diego; 2. San Diego State University, San Diego

A43 An investigation of lexical-semantics in the semantic variant of Primary Progressive Aphasia: Monitoring eye-movements in a word-picture matching task Race, D. (1), Hillis, A. (1); 1. Johns Hopkins University School of Medicine, Baltimore, MD

SPEECH PRODUCTION

A45 Persistent developmental stuttering as a disorder of neural adaptation Gracco V.L. (1, 2), Frost S. (2), Mencel E. (2), Max L. (2, 3); 1. McGill University, Montreal, QC, Canada; 2. Haskins Laboratories, New Haven, CT; 3. University of Washington, Seattle, WA

A51 Speech sensory motor transformations occur bilaterally in the dorsal stream Cogan, G. B. (1), Thesen, T. (2), Carlson, C. (2), Doyle, W.K. (2), Decinsky, O. (2), Pesaran, B. (1); 1. New York University, NY; 2. NYU Langone Medical Center, NY
Poster Session B

Thursday, November 10

3:20 - 4:50 pm

Senate, Capitol C, and Capitol C Pre-Function

SPEECH PERCEPTION

B1 Acquisition of frequent syllabic sensory and motor patterns within a neurocomputational model of speech processing

Eckers, C. (1), Kannampuzha, J. (1), Heim, S. (1, 2), Kröger, B. J. (1), 1. University Hospital Aachen and RWTH Aachen University, Aachen, Germany; 2. Research Center Jülich, Institute of Neuroscience and Medicine (INM-1), Jülich, Germany

B2 Essential cortical sites for single word repetition in the posterior peri-Sylvian operculum identified by electrocortical stimulation

Babiak, M.C. (1), DeLeon, J. (1), and Chang, E.F. (1); 1. University of California San Francisco, CA

B4 Visual Speech and Speech Production Rely on Separate Cognitive Networks: Evidence from Articulatory Suppression, the McGurk Effect and fMRI

Matchin, W. (1), Hickok, G. (1); 1. University of California, Irvine

B5 On the role of the dorsal auditory stream: syllable onset complexity in speech perception and speech production

Deschamps, I. (1), Gracco, V. (1, 2), Baum, S. (1); 1. McGill University, Montreal, Canada; 2. Haskins Laboratories, New Haven, Connecticut

B6 Feedforward vocal predictions characterized by speaking-induced suppression of auditory cortex

Niziolek, C. (1), Nagarajan, S.S. (1), Houde, J.E. (1); 1. UCSF, San Francisco, CA

B7 Cortical regions involved in sensorimotor processing of syllable sequences

Rong, E. (1), Isenberg, A.L. (1), Hickok, G. (1); 1. University of California, Irvine

B8 A mediating role of the auditory-motor dorsal pathway in selective adaptation to speech

Grabski, K. (1), Tremblay, P. (2), Gracco, V. (3, 4), Sato, M. (1); 1. CNRS & Grenoble Universités, Grenoble, France; 2. CIMEC, University of Trento, Trento, Italy; 3. CRLMB, Montreal, Canada; 4. McGill University, Montreal, Canada

B9 Incongruence between low- and high-level speech perception within core production regions

Elgie, B. (1), Baum, S.R. (1), Gracco V.L. (1, 2); 1. McGill University, Montreal, QC, Canada; 2. Haskins Laboratories, New Haven, CT

B10 Source space analysis of cortical responses to auditory feedback perturbations: An MEG study

Kort, N. (1), Houde, J.F. (1), Nagarajan, S.S (1); 1. University of California, San Francisco

B11 A longitudinal study on the neural development of English vowel processing: Comparing monolingual versus bilingual children

B12 Language-Specific Tuning of Audiovisual Integration in Early Development

B13 Elucidating neural mechanisms for speech perception development: An MEG study with children with autism, their clinically typical siblings, and typically developing children

Gage, N. (1), Isenberg, A. (1), Fillmore, P. (2), Osann, K. (1), Spence, M. (1); 1. The University of California, Irvine; 2. The University of South Carolina, Columbia

B14 Neural specialization for speech at birth: Comparing native and non-native language

B15 Subcortical correlates of pattern detection

Sko, E. (1), Spitz, E., (1), Kraus N. (1); 1. Northwestern University, Evanston, IL

B16 Bilinguals show enhanced subcortical representation of sound

Krizman, J. (1), Marian, V. (1), Shook, A. (1), Skoe, E., (1), Kraus, N. (1, 2); 1. Northwestern University, Evanston, IL; 2. Northwestern University, Chicago, IL

B17 Response bias modulates motor system activity during speech discrimination

Venezia, J.H. (1), Saberi, K. (1), Hickok, G. (1); 1. University of California, Irvine

B18 Neurophysiological indices of Mandarin lexical tone processing: Effect of language experience and memory load

Yu, Y. H. (1), Shifer, V.L. (1); 1. Graduate School and University Center, City University of New York

B19 Attending to the unpredictable: contextual constraint modulates early perceptual processing of word onsets in natural speech

Astheimer, L. B. (1), Sanders, L. D. (2); 1. York University, Toronto, ON; 2. University of Massachusetts, Amherst
B20 Neural correlates of interindividual differences in children's audiovisual speech perception
Beauchamp, M.,(1,2), Nath, A.,(1) 1. University of Texas Medical School at Houston, TX; 2. Rice University, Houston, TX

B21 Psychophysical and physiological studies of synthetic vowel harmonic structure Jenkins, Julian III (1), Simon, J. Z. (1), Poeppel, David (2), Idsardi, William J. (1); 1. University of Maryland, College Park, MD; 2. NYU, New York

B22 Featural encoding of sound voices and hemispheric differences in speech perception: an fMRI-adaptation study Lawyer, L. (1), Corina, D. K. (1); 1. University of California Davis, CA

PROSODY

B23 Influence of Music Aptitude on Metrical Expectancy during speech perception Magne, C.,(1), Jordan, D.,(1), Gordon, R. L.,(2); 1. Middle Tennessee State University, Murfreesboro, TN; 2. Vanderbilt University, Nashville

B24 Stress and phonemes are processed independently in neuronal word form recognition Schild, U. (1), Becker, A. (1), Friedrich, C. K. (1); 1. University of Hamburg

B25 The word order processing is modulated by rhythmic pattern during silent reading: ERP evidence Luo, Y. (1), Zhou, X. (1); 1. Peking University, Beijing, China

MULTILINGUALISM

B27 Language discrimination in monolingual and bilingual infants of Spanish and Basque Monika Molnar (1), Judit Gervain (2), and Manuel Carreiras (1) 1. University of Cambridge; 2. CNRS & Universite Paris Descartes, Paris

B29 Language experience modulates perception of phonemic categories Harvey, P. (1), Zevin, J. (1); 1. Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York

B30 Bilingualism: characteristics of intensive language training in the adult brain Jennika Soles (1), Megan Callahan (1), Jen-Kai Chen (1), Kate Watkins (2), Denise Klein (1); 1. Montreal Neurological Institute; 2. University of Oxford

B31 Priming Tip-of-the-Tongue States in Poor and Good Foreign Language Learners Borodkin, K. (1), Faust, M. (1); 1. Bar Ilan University, Ramat Gan, Israel

B32 Sensorimotor plasticity when learning to produce non-native speech Simmons, A. J. (1), Wise, R. J. S. (1), Iverson, P. (2), Leech, R. (1); 1. Imperial College London, UK; 2. University College London, UK

READING & WRITING

B34 Early decomposition effects during visual processing of past tense verbs: An MEG study using masked priming and single-word lexical decision tasks Fruchter, J. (1), Stockall, L. (2), Marantz, A. (1); 1. New York University, New York; 2. Queen Mary, University of London, UK

B35 Number of meanings and number of senses: An ERP study of sublexical ambiguities in reading Chinese disyllabic compounds Huang, H.W.(1), Lee, C.Y.(2); 1 University of Illinois, Urbana-Champaign; 2 Institute of Linguistics, Academia Sinica, Taiwan

B36 Interhemispheric effective connectivity increases during processing of Japanese Kanji Keith J. Kawabata Duncan (1,2), Tae Tsvomey (3), Parker Jones (1), Mohamed Seghier (1), Katsuuyuki Sakai (2), Cathy J. Price (1), Joseph T. Devlin (3); 1. Wellcome Trust Centre for Neuroimaging, UCL, London, UK; 2. University of Tokyo, Japan; 3. UCL, London, UK

B39 Learning to read a new language shapes the neural activities associated with reading in the native language **Leilei Mei** (1), **Gui Xue** (2,3), **Zhonglin Lu** (3), **Qi Dong** (2), **Chuansheng Chen** (1); 1. University of California, Irvine, CA; 2. Beijing Normal University, Beijing, China; 3. University of Southern California, Los Angeles, CA

B40 Reading faces: Investigating the use of a novel face-based orthography in acquired alexia **Moore, M.W.** (1), **Brendel, P.C.** (1), and **Fiez, J.A.** (1); 1. The University of Pittsburgh, PA

B41 Abstract letter identity representations revealed through multi-voxel similarity analysis **Rothlein, D.** (1), **Rapp, B.** (1); 1. The Johns Hopkins University, MD

B42 Functional network elements in patterned hand movements and writing **Saarinen, T.** (1), **Kujala, J.** (1), **Jalaca, A.** (1), **Laaksonen, H.** (1), **Salmelin, R.** (1); 1. Aalto University, Espoo, Finland

B43 Orthographic learning in real-time: Differential contributions of the fusiform gyrus and the hippocampus **Schubert, T.** (1), **Rapp, B.** (1); 1. Johns Hopkins University, Baltimore, MD

B44 Spatial specification in Chinese character recognition: The role of structural configuration and radical similarity **Su, I.-F.** (1), **Lee, R.H.-M.** (1), **Law, S.-P.** (1); 1. The University of Hong Kong, Hong Kong

B45 Eye Movement Modulation of Word Processing **Temereanca, S.** (1), **Hamalainen, M.S.** (1), **Kuperberg, G.** (1,2), **Stufflebeam, S.M.** (1), **Halgren, E.** (3), **Brown, E.N.** (4,5); 1. Harvard Medical School, Martinos Center for Biomedical Imaging, Charlestown, MA; 2. Tufts University, Medford, MA; 3. University of California, San Diego, CA; 4. Massachusetts General Hospital, Boston; 5. Harvard/MIT, Cambridge, MA

B47 Dissociating visual form from frequency using Japanese **Tecomey, T.** (1), **Kawabata Duncan, K. J.** (2,3), **Hogan, J. S.** (1), **Morita, K.** (3), **Umeda, K.** (3), **Sakai, K.** (3); 1. University College London, London, UK; 2. University College London, Welcoming Trust Centre for Neuroimaging, London, UK; 3. University of Tokyo, Japan

B48 Hierarchical processing effects support reading of words and false fonts **Woodhead, Z.** (1), **Barnes, G.** (1), **Penny, W.** (1), **Teki, S.** (2), **Price, C.** (1), and **Jeff, A.** (3); 1. Welcoming Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; 2. Newcastle Auditory Group, Medical School, Newcastle University, Newcastle-upon-Tyne, UK; 3. Institute of Cognitive Neuroscience, University College London, UK

SOCIAL & EMOTIONAL PROCESSING

B49 Understanding speaker meaning: Neural correlates of pragmatic inferencing in discourse comprehension **Bashkova, J.** (1), **Weber, K.** (2), **Petersson, K.-M.** (1), **Hagoort, P.** (1), **van Berkum, J.** (1,3); 1. Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; 2. Radboud University, Donders Institute (RU/DI-BCB), Nijmegen, Netherlands; 3. Utrecht University, Utrecht, Netherlands

B50 Is it over-respectful or dis-respectful? Differential brain responses in perceiving pragmatic violation of social status during language communication **Xiaoming Jiang** (1), **Yi Li** (1), **Xiaolin Zhou** (1); 1. Feking University, Beijing, China

SPEECH PERCEPTION

B52 “A salmon is not a bib” (but perhaps vice versa): asymmetric mismatch negativity responses to word-final consonants **Scharinger, M.** (1), **Bendixen, A.** (2), **Obleser, J.** (1); 1. Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; 2. Institute of Psychology, University of Leipzig, Germany

MULTILINGUALISM

C1 Examining the role of proficiency in second language processing: An event-related potential (ERP) investigation of number and gender agreement in L2 Spanish **Alemán Bañón, J.** (1), **Fiorentino, R.** (1), **Gabriele, A.** (1); 1. University of Kansas, Lawrence, KS

C2 Neural Substrates Underlying New Word Learning in Adult Monolinguals and Early Spanish-English Bilinguals **Kailyn Bradley** (1), **Kelly E. King** (2), **Arturo E. Hernandez** (1); 1. University of Houston, TX; 2. University of Minnesota

C3 The Assessment of Code-Switching Experience Survey (ACSES): A new tool for assessing code-switching behavior in Spanish/English bilinguals **Blackburn, A.** (1), **Wha, N.Y.** (1); 1. The University of Texas at San Antonio, TX
C4 Pathétique! Or simply sad? Processing emotion in L1 and L2: an ERP study
Midgley, K. (1,2), Delaney-Bush, N. (1) Holcomb, P. J. (1); 1. Tufts University, Medford, MA.
2. Laboratoire de Psychologie Cognitique, Marseille, France

C6 On bilingual lexical access when does language membership come into play?
Ng, S. (1), Cisneros, E. M. (1), Wicha, N. (1); 1. The University of Texas, San Antonio, TX

C8 Interaction between task demands and stimuli type during word reading
Yang, J. (1), Zevin, J. (1); 1. Sackler Institute of Developmental Psychobiology, Weill Cornell Medical College, New York, NY

C9 Stimulus by task interactions in Chinese character processing
Jason D. Zevin (1), Jianfeng Yang (3), Xiaojuan Wang (4); 1. Sackler Institute of Developmental Psychiatry, Weill Cornell Medical College, New York; 2. Haskins Laboratories, New Haven, CT; 3. Institute of Psychology, Chinese Academy of Sciences, Beijing, China; 4. State Key Laboratory of Cognitive Science and Learning, Beijing Normal University, Beijing, China

C10 Association of the DYX1C1 dyslexia susceptibility gene in the general Chinese population
Zhang, Y. (1), Shu, H. (1), Shi, B. (1), Li, J. (1), Burmeister, M. (2), Tardif, T. (2); 1. Beijing Normal University, Beijing, China; 2. The University of Michigan

C11 The repeated name penalty in Hebrew using MEG
Almor, A. (1), Harpaz, Y. (2), Goldstein A. (2); 1. The University of South Carolina, Columbia, SC; 2. Ghonda Brain Center, Bar Ilan University, Ramat Gan, Israel

C12 Patterns of language and reading deficit in children exposed to domestic violence
Blackburn, J. (1); 1. Towson University, Towson, MD

C13 ERP evidence of a cost for metrical reanalysis in silent reading
Breen, M. (1), Sanders, L. D. (2), Clifton, C. Jr. (2); 1. Mount Holyoke College, South Hadley, MA; 2. UMass Amherst, Amherst, MA

C14 ERP evidence for distinguishing between orthographic/phonological and balanced adult English readers
Karuzis, V. (1), Dien, J. (1), Berens, M. (1), O’Rourke, P. (1), Hoermann, H. (1); 1. The University of Maryland, College Park, MD

C15 Age-related Differences in the Posterior-Anterior Gradient of Word-Specificity in the Visual Word Form System
Oulade, O. (1), Flowers, D-L. (1), Napoliello, E. (1), and Eden, G. (1); 1. Georgetown University Medical Center, Washington, D.C.

C16 Resting-state functional connectivity related to single-character reading in healthy Chinese-speakers
Wang, X. (1), Han, Z. (1), He, Y. (1), Bi, Y. (1); 1. Beijing Normal University, Beijing, China

C17 Impaired inflectional morphology in children with Developmental Dyslexia: converging evidence from behavioral and electrophysiological measures
Cantiani, C. (1,2), Guasti, M. T. (2), Perego, P. (1), Lorusso, M. L. (1); 1. Scientific Institute E. Medea, Bosisio parini, LC, Ital; 2. University of Milano-Bicocca, Italy

C18 Lexical Processing is Delayed by 100 ms in a Second Language
Coderre, E. (1), van Heuven, W.J.B. (1), Conklin, K. (1); 1. The University of Nottingham, Nottingham, UK

C19 The effect of mood on second language word processing
van der Meij, M. (1), Lopes-Perez, J. (1), van de Velde, A. (1), Barber, H.A. (1); 1. University of La Laguna, La Laguna, Spain

C20 Semantic parafoveal processing in reading Chinese: An ERP study
Suiping Wang (1), Nan Li (1), Hsuan-Chih Chen (2); 1. South China Normal University, Guangzhou, China; 2. Chinese University of Hong Kong, China

C21 Parafoveal N400 effect during sentence reading: a fixation-related brain potentials (FRPs) study in combination with the boundary technique
Muñoz, S. (1), Havelka, S. (2), Barber, H.A. (1), Hutzler, F. (2); 1. University of La Laguna, Spain; 2. University of Salzburg, Austria

C22 Neural bases of dyslexia in primary progressive aphasia

C23 Dysfunctional visual word form area in a case of progressive alexia

C24 Making the brain dyslexic: Evaluation of a novel simulation paradigm
Heim, S. (1,2), Tholen, N. (2,1), von Oeverheidt, A.C. (2,1), Grande, M. (1), Weidner, R. (2), Amunts, K. (1,2); 1. Medical School, RWTH Aachen University, Aachen, Germany; 2. Institute of Neurosciences and Medicine (INM1,INM3), Research Centre Juelich, Germany
SOCIAL & EMOTIONAL PROCESSING

C26 Activation of a mentalizing region predicts behavioral accuracy in the classification of ‘posed’ and genuine amusement laughter. McGettigan, C. (1), Agnew, Z.K. (1), Walsh, E. (1,2), Jessop, R. (1), Scott, S.K. (1); 1. Institute of Cognitive Neuroscience, University College London, UK; 2. Institute of Psychiatry, King’s College London, UK

ACQUISITION

C28 Untrained word combinations and grammatical forms in a previously non-verbal adult with autism. Loughlin, E. (1), Thorne, J. (1), O’Grady, J. (1), Gordon, B., (1); 1. The Johns Hopkins University, Baltimore, MD

MANUAL & SIGN LANGUAGE

PATHOLOGY

C39 Object naming during overt picture naming in healthy and anomic stroke patients. Holland, R. (1), Leff, A.P. (1), Price, C.F. (1), Crinion, J. (1); 1. Institute of Cognitive Neuroscience, University College London

C40 Effects of lexical processing impairments on sentence comprehension in Broca’s aphasia. Choy, J. J. (1,2); 1. University of Kansas, Life Span Institute, Lawrence, KS

C41 The common neuroanatomical basis for ideomotor apraxia and aphasia: a lesion-symptom mapping investigation. Turken, A.U. (1), Dronkers, N.F. (1,2); 1. US Department of Veterans Affairs, Research Service, Martinez, CA; 2. University of California Davis, Davis, CA
C42 The timecourse of anticipatory sentence comprehension in children with SLI Borovsky, A. (1,2), Elman, J. E. (1), Evans, J. L. (1,3); 1. University of California, San Diego, La Jolla, CA; 2. Stanford University, Palo Alto, CA; 3. San Diego State University, San Diego, CA

C43 Use of Multi-modal Imaging in uncovering the pathological basis of Primary Progressive Aphasia syndromes H. Chertkow (1), James Nikelski (1), Gabriel Leger (2), Ziad Nasreddine (3), Victor Whitehead (1), Randi Pilon (1), Stephen Friston (4); 1. Lady Davis Institute, Jewish General Hospital, McGill; 2. CHUM/Centre Hospitalier de l’Université de Montréal; 3. Neuro Rice Sud, McGill; 4. Jewish General Hospital, McGill University

SPEECH PRODUCTION

C46 Independent distractor frequency and age-of-acquisition effects in picture-word interference: fMRI evidence for post lexical and lexical accounts according to distractor type de Zubicaray, G.I. (1), Miozzo, M. (2), Johnson, K. (1), Schiller, N.O. (4), McMahon, K.L. (1); 1. The University of Queensland, Brisbane, Australia; 2. Cambridge University, Cambridge, UK; 3. Leiden University, Leiden Institute for Brain and Cognition (LIBC), Netherlands

C47 Speech Production: Towards an Integration of Motor Control, Psycholinguistic, Neurolinguistic, and Neurophysiological Models Hickok, G. (1); University of California, Irvine, CA

C48 Cortico-cortical connectivity differs for action versus object naming Liljeström, M. (1), Kujala, J. (1), Vartiainen, J. (1), Salmelin, R. (1); Aalto University, Brain Research Unit, Espoo, Finland

C49 The Error-Related Negativity (ERN) as general marker of monitoring in speech production: Evidence from the overt naming of cognates Acheson, D. J. (1,2), Ganushchak, L. Y. (1), Christoffels, I. K. (3), Hagoort, P. (1,2); 1. Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; 2. Donders Institute for Brain, Nijmegen, The Netherlands; 3. Leiden University, Leiden Institute of Psychology & Leiden Institute of Brain and Cognition, Leiden, The Netherlands

C50 Denoising the speaking brain: characterizing and removing image artifacts in BOLD fMRI of continuous overt speech production Xu, Y. (1), AbdulSabur, N. (1,2), Liu, S. (1), Chouch, H. (1), Braun, A. (1); 1. National Institutes of Health, Bethesda, MD; 2. University of Maryland, College Park, MD

C51 Working, Declarative and Procedural Memory in Specific Language Impairment Jarrad A. G. Lam (1,2), Gina Conti-Ramsden (3), Debra Page (3), Michael T. Ullman (4); 1. Deakin University, Melbourne, Australia; 2. The University of Southern Denmark, Odense, Denmark; 3. The University of Manchester, UK; 4. Georgetown University, Washington D.C.

Poster Session D

Friday, November 11 10:00 - 11:30 am
Senate, Capitol C, and Capitol C Pre-Function

ANATOMY

D1 Characterizing Functional-anatomic Variability of Sensory-Motor Integration Area Spt Isenberg, A. L., Okada, K., and Hickok, G.; University of California, Irvine, CA

D2 Why white matter matters in understanding chronic stroke aphasia: Novel evidence from Anatomical Connectivity Mapping Rebecca A. Butler (1), Anna M. Woollams (1), Karl V. Embleton (2), Geoffrey J. M. Parker (3), Matthew A. Lambon Ralph (1); 1. Neuroscience and Research Unit, University of Manchester; 2. School of Psychological Sciences, University of Manchester; 3 Biomedical Imaging Institute, University of Manchester

COGNITIVE AND EXECUTIVE PROCESSING

D3 Role of Working Memory in Explicit and Implicit Artificial Grammar Learning Yang, J. (1), Clark, P. (1), Swick, K. (1), Watkins, H. (1), Li, P (1); Pennsylvania State University, University Park, PA

D4 The effect of active prediction on the N400: MEG evidence for a left anterior temporal generator Lau, E. (1,2), Burns, S. (1,2), Gramfort, A. (1), Delaney- Busch, N. (1,2), Fields, E. (1,2), Fanucci, K. (1,2), Holcomb, P. (2), Hamalainen, M. (1,2), Kuperberg, G. (1,2); 1. Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA; 2. Tufts University, Medford, MA

The Society for the Neurobiology of Language 23
D5 Towards the Functional Neuroanatomy of a Common Meaning System for Language and Visual Images Revealed by fMRI and DTI
Jouen, A-L. (1), Ellmore, T.M. (2), Madden, C. (1), Pallier, C. (3), Dominey P.F. (1), Ventre-Dominey J. (1); 1. INSERM Stem Cell and Brain Research Institute, Robot Cognition Lab, Lyon, France; 2. The University of Texas Medical School at Houston, Houston, TX; 3. Unité de Neuroimagerie Cognitive INSERM-CEA, Neurospin center, Gif-sur-Yvette, France

D6 White Matter and Letter Fluency: a Correlational Story With Frontotemporal Lobar Degeneration
Strain, J. (1), Hart, J. (1), Diaz-Arrastia, R. (2), and Womack, R. (2); 1. The University of Texas at Dallas, TX; 2. The University of Southwestern Medical Center at Dallas, TX

D7 Common cognitive control mechanisms in sentence production and comprehension
Humphreys, G. (1), and Gennari, S. (1); 1. University of York, UK

D8 Subdivision of frontal cortex mechanisms for language production
Thothathiri, M. (1,2,3), Gagliardi, M. (1), and Schuartz, M. E. (1); 1. Moss Rehabilitation Research Institute, Philadelphia, PA; 2. University of Pennsylvania, Philadelphia, PA; 3. Swarthmore College, Swarthmore, PA

SYNTAX

D9 Shared Network for Noun and Verb Reading in the Ventral and Dorsal Streams: Converging Evidence From fMRI Activation and Reaction

D10 Neural mechanisms supporting implicit versus explicit acquisition of grammar in adults
Batterink, L., Neville, H. (1); 1. The University of Oregon, Eugene, OR

D11 Is there a lexical boost for syntactic repetition effects as measured by fMRI activation and reaction?
Segaert, K. (1,2), Kempen, G. (1,3), Petersson, K.M. (1) and Hagoort, P. (1,2); 1. Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; 2. Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands; 3. Cognitive Psychology Unit, Leiden University, Leiden, the Netherlands

D12 Extending Template Construction Grammar: A Model of Language Comprehension
Barres, V. (1), Lee, J. (1), Arbib, M. (1,3); 1. University of Southern California, CA; 2. USB Brain Project

D13 Cognitive and language proficiencies predict variability in neural activity mediating semantic and syntactic processing in children
Hampton Wray, Amanda (1), Weber-Fox, Christine (1); Purdue University, West Lafayette, IN

D14 Neural mechanisms underlying noun-verb distinction—fMRI Evidence from semantic processing of Chinese words
Yu, X. (1), Lue, S-P. (1), Han, Z. (2), Bi, Y. (2); 1. The University of Hong Kong, Hong Kong; 2. Beijing Normal University, Beijing, China

D15 The Neural Correlates of Incremental Structure-Building and Interpretation
Brennan, J. (1), Pyllkänen, L. (1); 1. New York University, New York, NY

D17 Increasing Combinatoric Complexity in MEG
Leiken, K. (1), Pyllkänen, L. (1); 1. New York University, New York, NY

D18 Neural correlates of prosody and plausibility in garden-path processing

D19 Damage to left anterior temporal cortex predicts impairment of complex syntactic processing: A lesion-symptom mapping study

D20 Syntactic Movement in Broca’s aphasics patients: An ERP study
Torres-Agustín R. (1), Rodríguez Camacho M. (2), Silva-Pereyra J. (2), Rodríguez-Aguelo Y. (1), Robles Aguirre F. (1); 1. National Institute of Neurology and Neurosurgery, Mexico; 2. National Autonomous University of Mexico, Iztacala Higher Education Faculty

D21 Learning Structural Biases of Novel Verbs: An ERP Study
Qi, Z. (1), Garnsey, S. M. (1); 1. University of Illinois, Urbana-Champaign, IL

D22 Effects of second language proficiency in late learners on neural organization for syntactic processing indexed by ERPs and fMRI
Pakulak, E. (1), Dow, M. (1), Neville, H. (1); 1. University of Oregon, Eugene, OR

D23 Multi-Voxel Pattern Analysis of Noun and Verb Differences in Visual and Ventral Temporal Cortex
D24 Interactions between verb subcategorization and syntactic priming: Evidence from self-paced reading and event-related potentials
Brothers, T. (1, 2); 1. The Johns Hopkins Medical Institutions

D25 Probabilistic cues to grammatical category representations in the human brain
Arciuli, J. (1); **Moseley, E.** (2); **McMahon, K.** (3); **de Zubicaray, G.** (3); 1. The University of Sydney, Sydney, Australia; 2. The University of Melbourne, Melbourne, Victoria, Australia; 3. The University of Melbourne, Melbourne, Victoria, Australia

D26 Time frequency analysis of null arguments and anaphoric violations
Farrer, J. (1); **Oshima-Takane, Y.** (1); **Kanayama, N.** (2); **Nakano, H.** (3); **Genesee, F.** (1); 1. McGill University, Department of Psychology, Montreal, QC, Canada; 2. The University of Sydney, Sydney, Australia; 3. Saint Mary’s University, Department of Psychology, Moraga, California, US

D27 Neural correlates of sentence comprehension in adolescents
Stewart R. A. (1); **Pisupati A.S.** (2); **Davis N.** (2); **Rosenberg L.** (1); **Young K.M.** (1); **Ryan M.** (1); **Pekar J.** (1); **Rimrodt S. L.** (2); **Cutting L. E.** (1, 2); 1. Kennedy Krieger Institute, Baltimore, MD; 2. Vanderbilt University, Nashville, TN

D28 Constructing conversation: fMRI intersubject correlations during communication
Menenti, L. (1); 1. University of Glasgow, Institute for Neuroscience and Psychology, Glasgow, United Kingdom

D29 Functional community structure for discourse comprehension and gesture processing
Andric, M. (1); **Small, S.L.** (1, 2); 1. The University of Chicago, IL; 2. University of California, Irvine, CA

D30 The Use of Implicit Measures to Assess Receptive Vocabulary Knowledge in Individuals with Autism
Gangopadhyay, I. (1); **Ledoux, K.** (1); **Bosley, L.** (1); **Gordon, B.** (1); 1. The Johns Hopkins University School of Medicine, Baltimore, MD

D31 The differentiation of semantic categories during acquisition of novel words
Fargier, R. (1); **Ploux, S.** (1); **Ploux, S.** (1); **Paulignan, Y.** (1); **Reboul, A.** (1) and **Nazir, T.A.** (1); 1. UCBL-CNRS FRE 3406, Institut des Sciences Cognitives, Bron, France

D32 Body Part Representations in Action Verb Processing and Naming: What Happens in Aphasia?
Faroqi-Shah, Y. (1); 1. University of Maryland

D33 The influence of written distractor words on brain activity during overt picture naming
Michele T. Diaz (1); **Larson J. Hogstrom** (1); 1. Duke Institute for Brain Sciences

D34 When the leash constrains the dog: Neural correlates of associative interference during sentence production
Sass, K. (1, 3); **Muehlhaus, J.** (1, 3); **Habel, U.** (1, 3); **Heim, S.** (1, 3); 1. RWTH Aachen University, Aachen, Germany; 2. Jülich, Institute of Neurosciences and Medicine (INM-1), Jülich, Germany; 3. JARA - Translational Brain Medicine

D35 The many timings of semantic interference during word production
Llorens, A. (1, 2); **Trebuchon-Da Fonseca, A.** (1); **Ries, S.** (2); **Alario F.-X.** (2); **Liègeois-Chauvel, C.** (1); 1. Aix-Marseille Université & INSERM UMR 751; 2. Aix-Marseille Université & CNRS

D36 Towards the Unification of the N400 in Lexical Access and in Sentence Processing
Gomes, J. N. (1); **Soto, M.** (1); **França, A. I.** (1); **Gesualdi, A. R.** (2); 1. Federal University of Rio de Janeiro, UFRJ; 2. Federal Center of Technology of Rio de Janeiro, CEFET-Rio

D37 Eye Movements and the Temporal Unfolding of the SemRep Semantic Representation in Scene Description
Lee, J. (1); **Yang, B.** (1); **Arbib, M.** (1, 2); 1. University of Southern California, CA; 2. USB Brain Project

D38 Simple Composition in Reading, Listening, and Production: An MEG Investigation
Bemis, D. (1); **Pykkänen, L.** (1); 1. New York University, New York, NY

D39 From words to emotion via body motion: a role for the motor system in binding abstract meaning
Moseley, R. L. (1); **Carota, F.** (1); **Hauk, O.** (1); **Mohr, B.** (1, 2); **Pulvermüller, F.** (1); 1. MRC Cognition and Brain Sciences Unit, Cambridge, UK; 2. Anglia Ruskin University, Cambridge, UK

D40 When concepts go quiet: A link between impaired knowledge of sound words and atrophy of auditory association cortex in logopenic progressive aphasia
Bonner, M.F. (1); and **Grossman, M.** (1); 1. University of Pennsylvania, Philadelphia

D41 The Pyramids and Palm Trees Test, the Kissing and Dancing Test, and tests on other semantic attributes: further evidence from the Chinese population
Chenxi He (1); **Qi Hao Guo** (2); **Xiaoliang Wen** (1); **Zhizhou Han** (1); **Yanchao Bi** (1); 1. Beijing Normal University, Beijing, China; 2. Huashan Hospital, State, Shanghai Medical College, Fudan University, Shanghai, China

D42 Orthographic, phonological and semantic dynamics during ambiguity resolution: an fMRI investigation
Bitan, T. (1); **Kastory, A.** (1); **Leib, A.** (1); **Markus, A.** (1); **Eviatar, Z.** (1); **Peleg, O.** (1); 1. University of Haifa, Israel
D43 Different temporal lobe regions support processing of lexical, compositional and discourse-level semantics Costanzo, M. (1), Xu, J. (1), Braun, A. R. (1); 1. National Institutes of Health, Bethesda, MD.

D44 An EEG time frequency analysis of noun-object and verb-action identification Delarosa, B. (1), Maguire, M. (1), Sides, L. (1), Magnon, G. (1); 1. University of Texas at Dallas, TX.

D45 When Moses built the Ark: ERP evidence for qualitative cross-linguistic variation in the neural processing of semantic illusions Tome, S. (1), Schlessewsky, M. (2), Bornkessel-Schossewsky, I. (1); 1. University of Marburg, Germany; 2. Johannes-Gutenberg-University Mainz, Germany.

D46 Online monitoring of the impact of language processing on motor processes: prehensile grip-force measures during passive listening of manual action words and sentences Aravena, P. (1), Delcrotoy, Y. (3), Frak, V. (2), Deprez, V. (1), Paulignan, Y. (1), Cheylus, A. (1), Nazir, T. (1); 1. CNRS UMR 5015, Institut des Sciences Cognitives, Bron, France; 2. Institut de Réadaptation Gingras-Lindsay de Montréal, Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, Université de Montréal, Québec; 3. Laboratoire URECA, UFR de Psychologie, Université Lille Nord de France, Lille, France.

D47 N400m does not differ between phonological, semantic or morpho-syntactic processing Bettus, G. (1,2), Dhond, R.P. (3), Kocacevic, S. (1), Sherfy, J. S. (1), Halgren, E. (1), Marinovic, K. (1); 1. UCSD, San Diego, CA; 2. INSERM U751, Marseille, France; 3. MGH/HMS/MIT Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA.

D48 Transcranial direct current stimulation speeds up automatic word retrieval Bosley, L.V. (1), Vannorsdall, T.D. (1), Andrejezuk, M. (1), Reese, K. (1), Schreter, D.J. (1), and Gordon, B. (1); 1. The Johns Hopkins University, Johns Hopkins University School of Medicine, Baltimore, MD.

D50 Beyond Broca’s and Wernicke’s areas: The roles of visual, motor and affective systems in narrative comprehension Chow, H. M. (1), Mar, R. A. (2), Braun, A. R. (1); 1. NIDCD/NIH, Bethesda, Maryland; 2. York University, Toronto, Ontario.

D51 Theory of Mind and Other Theories: The Role of the Temporo-Parietal Junction in Semantic Processing Leshinskaya, A. (1), Caramazza, A. (1); 1. Harvard University, Cambridge, MA.

Poster Session E

Friday, November 11 3:20 - 4:50 pm
Senate, Capitol C, and Capitol C Pre-Function

ANATOMY

E3 Dissociating gray and white matter neural integrity in chronic aphasia Bahrami, E. (1), Harvey, D. (1), Hamilton, A.C. (1), Ellmore, T.M. (2), and Schnur, T.T. (1); 1. Rice University, Department of Psychology, Houston, TX, US; 2. The University of Texas Health Science Center; Department of Neurosurgery, Houston, TX, US.

COGNITIVE AND EXECUTIVE PROCESSING

E7 The differential effect of working memory on sentence processing and responding to the comprehension probe Newman, S. (1), Seo, R. (1), Malais, E. (1); Indiana University.
E8 Discourse production and comprehension following left anterior medial prefrontal and anterior cingulate lesion Balasubramanian, V. (1); 1. Seton Hall University, South Orange, NJ

E9 Mode-Dependent Social Interference in Bilingual Lexical Selection: An fMRI Study Wang, Y. P. (1), Dong, Q. (1), Pat, S. (2), Kuhl, P.K. (2); 1. Beijing Normal University, Beijing, P. R. China; 2. Institute for Learning and Brain Sciences, University of Washington, Seattle

SYNTAX

E10 Structural processes in language and music are largely non-overlapping in the human brain Fedorenko, E. (1), McDermott, J. (2), Norman-Haignere, S. (1), Kanwisher, N. (1); 1. Massachusetts Institute of Technology, 2. New York University, Center for Neural Science

E11 Subliminal facilitation of predictive effects on syntactic processing in the left frontal region: An MEG study Iijima K. (1,2), Sakai K.L. (1,3); 1 University of Tokyo, Komaba, Japan; 2 Japan Society for the Promotion of Science, Tokyo, Japan; 3 CREST, Japan Science and Technology Agency, Tokyo, Japan

E12 Specialization of the human language areas for the recursive computation of syntactic structures Ohta, S. (1,2), Fukui, N. (2,3), Sakai, K. L. (1,2); 1. The University of Tokyo, Graduate School of Arts and Sciences, Tokyo; 2. CREST. Japan Science and Technology Agency, Tokyo; 3. Sophia University, Tokyo

E13 Priming at a Distance: Evidence for the Dual-Mechanism Account of Syntactic Priming Boudeyev, M.A. (1), Tooley, K.M. (2), Zirnstein, M. (1), Swaab, T.Y. (1), and Traxler, M.J. (1); 1. University of California, Davis; 2. Beckman Institute, University of Illinois

E15 Working memory span modulates the latency of event-related potential (ERP) responses to gap-filling Hestvik, A. (1), Bradley, E. (1), Bradley, C. (1,2); 1. University of Delaware, Newark, DE; 2. Florida International University, Miami, FL

E17 Exploring the neural bases of dependency resolution using coordination sentences Linzen, T. (1), Shetreet, E. (2,3), Friedmann, N. (3); 1. New York University, New York; 2. Children's Hospital Boston, MA; 3. Tel-Aviv University, Tel Aviv, Israel

E18 MEG correlates of grammatical agreement processing in Spanish Molinaro, N. (1), Monahan, P. (1), Barber, H.A. (2), Carreiras, M. (1); 1. BCBL, Donostia-San Sebastian, Spain; 2. Universidad de La Laguna, La Laguna, Spain

E19 Neural correlates of unaccustive and unergative verb processing Schuchard, J. (1), Kielar, A. (1), Barbieri, E. (2), Thompson, C.K. (1); 1. Northwestern University, Evanston, IL; 2. University of Milano-Bicocca, Department of Psychology, Milan, Italy

E20 The effects of complement predictability on the processing of verb's complementation options Shetreet, E. (1,2), Linzen, T. (3), Friedmann, N. (1); 1. Tel Aviv University, Tel Aviv, Israel; 2. Children’s Hospital Boston, Boston, MA; 3. New York University, New York

E21 The Left Hemispherere alone Cannot Process Sentences That Are Not Easy Hyun, J. (1,2,3), Obler, L. K. (1,2,3), Spiro, III, A. (2,3,4), Kim, D-S. (5), Albert, M. L. (2,3); 1. The Graduate Center of the City University of New York, NY; 2. VA Boston Healthcare System, Boston, MA; 3. Boston University School of Medicine, Boston, MA; 4. Boston University School of Public Health, Boston, MA; 5. Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

E22 Word, syntax, and context in sign language: An fMRI study Inubushi, T. (1), Sakai, K.L. (1); 1. The University of Tokyo, Japan

E23 Distinguishing the respective roles of the MTG and IFG in language comprehension with fTMS Acheson, D. J. (1,2), Hagoort, P. (1,2); 1. Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; 2. Donders Institute for Brain, Cognition, and Behavior

E24 Role of Broca’s area in sentence comprehension: a lesion study Rogalsky, C. (1), Tomkovicz, V. (1), Shitapour, S. (2), Hickok, G. (3); 1. University of Southern California, Brain & Creativity Institute, Los Angeles, CA; 2. University of Iowa, Iowa City, IA; 3. University of California Irvine, Irvine

E25 The Dynamics of Complex Morpholexical Processes: Revealed by Searchlight Representational Similarity Analysis of MEG/EEG Data Su, L. (1,2), Fonteneau, E. (1,2), Wingfield, C. (2), Marslen-Wilson, W. (1,2); 1 University of Cambridge, UK; 2. MRC Cognition and Brain Science Unit, Cambridge, UK
E26 Plural attraction in attachment ambiguity Lee, E.-K. (1), Garnsey, S. M. (1); University of Illinois, Urbana-Champaign, IL

CONCEPTUAL/SEMANTIC/DISCOURSE PROCESSING

E27 Neural differences in metaphor processing modulated by modality Schmidt, G. L. (1), Drew, A. (1), Miller, E. (1); 1. Hope College, Holland, MI

E29 Resting-state fMRI reveals the neural basis of individual differences on object color knowledge processing Wang, X. (1), Han, Z. (1), He, Y. (1), Bi, Y. (1); 1. Beijing Normal University, National Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China

E30 Characterizing the Role of the Left Anterior Temporal Lobe in Combinatory Processes Westerlund, M. (1), Pykkänen, L. (1); 1. New York University, New York

E31 Neural distinctions between categories of abstract and concrete words: A multi-voxel pattern analysis Breining, B. (1), Rapp, B. (1); 1. Johns Hopkins University, Baltimore, MD

E32 N400 is elicited by pragmatic as well as semantic anomalies: a visual-world study of scalar implicatures Hunt III, L. (1), Politzer-Ahles, S. (1), Minai, U. (1), Fiorentino, R. (1); 1. The University of Kansas, Lawrence, KS

E33 The spatio-temporal characteristics of intelligible and unintelligible auditory word processing Halai, A. (1,3), Parkes, L. (2), Parker, G. (2) and Welbourne, S. (1); 1. (NARU), School of Psychological Sciences, University of Manchester, UK; 2. (ISBE), School of Cancer and Imaging Sciences, University of Manchester, UK; 3. (BH), University of Manchester, UK

E34 Contributions of anterior and posterior left hemisphere regions to semantic processing: Evidence from semantic competition during spoken word recognition in participants with aphasia Mirman, D. (1), Graziano, K. M. (1); 1. Moss Rehabilitation Research Institute

E35 The implicit transfer of motor strategy in language processing: an fMRI study Papeo, L. (1,2), Cecchetto, C. (1), Rumiati, R. I. (1), Tomasoni, B. (3); 1. International School for Advanced Studies, SISSA, Trieste, Italy; 2. Harvard University, Cambridge MA; 3. I.R.C.C.S. “Medea”, Polo Frili Venezia Giulia, Italy

E37 Event-related potential investigation of scalar implicature processing using picture-sentence verification Politzer-Ahles, S. (1), Fiorentino, R. (1), Jiang, X. (2), Zhou, X. (2); 1. University of Kansas, Lawrence, KS; 2. Peking University, Beijing, China

E38 When meaning becomes open-ended: An ERP study on processing literary metaphors Resta, D. (1), Bambini, V. (2), Grimaldi, M. (1); 1. University of Salento, C.R.I.L., Lecce, Italy; 2. Scuola Normale Superiore, Pisa, Italy

E39 Body movement and action word memory: Facilitation and inhibition effects Shebani, Z. (1), Pulvermüller, F. (1); 1. MRC Cognition and Brain Sciences Unit

E40 Hierarchical agreement processing in pronoun resolution: ERP evidence Xu, X. (1,2), Jiang, X. (3), Zhou, X. (3); 1. Nanjing Normal University, Nanjing, China; 2. (Ministry of Education), Southeast University, Nanjing, China; 3. Peking University, Beijing, China

E41 “Even a rich person can afford that luxury house”: Processing construction-based pragmatic violation during sentence comprehension Xiaoming Jiang (1), Yi Li (1), Xiaolin Zhou (1, 2); 1. Peking University, Beijing, China; 2. (Ministry of Education), Peking University, Beijing, China

E42 Electrophysiological investigation of biological and stereotypical gender violations in a gender-marked language Siyanova-Chanturia, A. (1), Pesciarelli, F. (1), and Cacciari, C. (1); 1. University of Modena and Reggio Emilia, Modena, Italy

E43 Language lateralization and verbal creativity: A developmental perspective Patael, S. (1), Borodkin, K. (1), Faust, M. (1); Bar-Ilan University, Ramat-Gan, Israel

E44 A dual lexicon model of cortical spoken language processing Goe, D. (1,2,3); 1. Massachusetts General Hospital, Boston, MA; 2. Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA; 3. Salem State University, Salem, MA
E45 Neural Separation of Acoustophonemic from Lexicosemantic Word Encoding

E46 Does the N400 reflect lexical access, integration, or both?
Huang, Y. (1), Hopfinger, J. (1), and Gordon, P. (1); 1. University of North Carolina at Chapel Hill, Chapel Hill, NC

E47 Word frequency and contextual predictability effects in an eye movement reading study: Evidence for early interactive processing
Shahid, A. (1), Hand, C.J. (1), O’Donnell, P.J. (1), Sereno, S.C. (1); 1. Institute of Neuroscience and Psychology, University of Glasgow

E48 The N400 in sentence frames or in prime word pairs: a unique electrophysiological effect?
Franca, A. I. (1); Gomes, J. N. (1); Soto, M. (1); Lage, A. C. (1); Gesualdi, A. R. (2); 1. The Federal University of Rio de Janeiro, Brazil – UFRJ; 2. Federal Center for Technological Education - CEFET-Rio, Brazil

E49 The influence of discourse context on verb integration and argument prediction: Evidence from Event-Related Potentials
Crocker, M. (1), Niefind, F. (1), Drenhaus, H. (1); Saarland University, Saarbruecken, Germany

E50 Prominence features in discourse: an visual ERP study of prodrop constructions in Chinese
He, Y. (1) and Schlesewsky, M (1); 1. Johannes-Gutenberg University Mainz, Department of General Linguistics, Mainz, RP, Germany

E51 Reading words, sentences and stories: Distinct oscillatory brain mechanisms for processing language meanings and constructing abstract mental representations

E52 Functional heterogeneity within Broca’s area
Fedorenko, E. (1) Kanwisher, N. (1); 1. Massachusetts Institute of Technology
Author Index

Entries are indexed by abstract number, not page number. The S- entries indicate slide presentations. The P- entries indicate poster presentations.

AbdulSabur, N – P-A50, P-C50
Abe, K – P-A24
Acheson, DJ – P-C49, P-E23
Agnew, ZK, P-A51, P-C26
Ahlfors, S – S-B1
Alario, F-X – P-D35
Albert, ML – P-E21
Alday, PS – S-B4
Alemán Bañón, JP – P-C1
Almor, A – P-C11
Amunts, K – P-C24, S-D1
Anderson, SM – P-C23
Anderson, C – P-D18
Andrejczuk, M – P-D48
Andric, M – P-D29
Angwin, A – P-A39, P-A49
Aravena, P – P-D46
Arbib, M – P-D12, P-D37
Arciuli, J – P-D25
Ash, S – P-C38
Aslin, RN – S-A2
Astheimer, LB – P-B19
Baart, M – P-B12
Babiak, M – P-B2, P-C22, P-C36
Bacha-Trams, M – S-D1
Bahrani, E – P-E3
Baillet, S – P-E36
Balasubramanian, V – P-E8
Baklo, JV – P-B3
Bambini, V – P-E38
Bangert, M – P-A26
Banks, B – P-A51
Barber, HA – P-C19, P-C21, P-E18
Barbieri, E – P-E19
Barnes, G – P-B48
Barnes, GR – P-A21
Barres, V – P-D12
Basnakova, J – P-B49
Basso, G – P-A47
Batch, L – P-A31
Batterink, L – P-D10
Baum, S – P-A35, P-B5
Baum, SR – P-B9
Bavelier, D – S-A2
Beal, DS – P-A37
Beauchamp, M – P-A35, P-B20
Becker, A – P-B24
Becker, ABC – P-A52
Bedny, M – P-C30
Beeson, PM – P-C23
Benson, J – P-A6
Berens, M – P-C14
Beren, MS – P-A7
Berger, M – P-C36
Bettus, G – P-D47
Bi, Y – P-C16, P-D14, P-D41, P-E29
Binder, JR – S-C4, P-E36
Bitan, T – P-D42
Blackburn, A – P-C3
Blackburn, J – P-C12
Blindauer, K – S-C4
Bolger, DJ – P-A27
Boller, A – P-C35, P-C38
Bonilha, L – P-D19
Bonner, A – P-A42
Bonner, M – P-A45, P-D52
Bonner, MF – P-A42, S-B4, P-D40
Borodkin, K – P-B31, P-E43
Borovskya, A – P-C42
Borovsky, R – P-D9
Bortfeld, H – P-B12
Bosley, L – P-D30
Bosley, LV – P-D48
Boudewyn, MA – P-E13
Boyd, JK – P-A28
Boylan, C – P-D23
Bradley, C – P-E15
Bradley, E – P-E15
Bradley, K – P-C2
Braun, A – P-C25, P-C50, P-C52, P-E51
Braun, AR – P-A50, P-D43, P-D50
Breznak, M – P-C13
Breining, B – P-E31
Brendel, PC – P-B40
Brennan, J – P-D15
Brothers, T – P-D24
Brown, EN – P-B45
Buckholder, L – P-A42
Burkholder, L – P-C35
Burmeister, M – P-C10
Burns, EL – P-A29, P-A43
Burns, S – P-D4
Butler, RA – P-D2
Cacciani, C – P-E42
Cai, S – P-A37
Callahan, M – P-B30
Camp, E – P-C35, P-C38
Cantiani, C – P-C17
Capasso, R – P-A11, P-A47
Capek, CM – P-C33
Caramazza, A – P-D51
Cardin, V – P-C33
Carlson, C – P-A52
Carota, F – P-D39, P-D49
Carreiras, MA – P-B14, P-B27, P-E18
Cecchetto, C – P-E35
Chandelle, J – P-A8
Chandrasekar, B – P-A16, P-A17
Chang, E – S-A4, P-C36
Chang, EF – P-A18, P-B2
Charles, PD – P-C45
Chen, C – P-B39
Chen, H-C – P-C20
Chen, J-K – P-B30
Chertkow, H – P-C43
Cheylus, A – P-D46
Chiarello, C – P-E2
Chow, H – P-C25, P-E51
Chow, HM – P-C52, P-D50
Chow, H – P-C50
Choy, JJ – P-C40
Christianson, K – P-D18
Christoffels, IK – P-C49
Chu, L – P-C37
Cisneros, EM – P-C6
Clark, P – P-D3
Clark, R – P-D4
Clifton, C, Jr. – P-C13
Codderre, E – P-C18
Cogan, GB – P-A52
Coleman, D – P-E4
Conant, LL – S-C4
Conklin, K – P-C18
Conti-Ramsden, G – P-C51
Cook, P – P-A42
Cook, PA – P-A45
Copland, D – P-A49
Copland, DA – P-A39
Corina, D – P-B22
Corina, DP – P-A34
Coslett, HB – P-A6
Costanzo, M – P-A11, P-D43
Crinion, J – P-A20, P-C39, P-C44
Crocker, M – P-E49
Crone, NE – P-A18, P-B3
Cummins, J – P-D9
Cutting, LE – P-D27
Dale, AM – P-E45
Damasio, H – P-A31
Datta, H – P-A9
Davis, MH – P-A13
Davis, N – P-D27
Davis, SJ – S-A2
de Zubicaray, GI – P-D25, P-C46
Del Tufo, S – P-B33
Delaney-Bushe, N – P-D4, P-C4
Delarosa, B – P-D44
De Leon, J – P-B2, P-C36
Delevoye, Y – P-D46
De Marco, AT – P-A36
Den Ouden, DB – P-D18, P-D19
Depowski, N – P-B12
Deprez, V – P-D46
Desai, R.H. – S-C4, P-E36
Deshamps, I – P-B5
Devinsky, O – P-A52
Devlin, JT – P-B36, P-B47
Dhond, RP – P-D47
Diaz, Michele T – P-D33
Diaz-Arrastia, R – P-D6
Dick, F – P-C27
Dickey, M – P-D18
Dien, J – P-A7, P-C14
Dikker, S – S-C3
Ding, N – P-A10
Dominey, PF – P-D5
Dong, Q – P-B39, P-E9
Dow, M – P-D22
Doyle, WK – P-A52
Drenthus, H – P-E49
Drew, A – P-E7
Dreyfuss, M – P-A42, P-A45, P-C38
Dronkers, NF – P-B3, P-C41
Eagle, M – P-C25
Eckers, C – P-B1
Eddy, M – P-B33
Eden, G – P-C15, P-E5
Eimontaité, I – P-C31
Einbinder, E – P-E5
Elgie, B – P-B9
Ellmore, T – S-D4, P-D5, P-E3
Elman, JE – P-C42
Elman, JL – P-E45
Embleton, KV – P-D2
Erdocia, K – P-E14
Erlenmen, M – P-A50, P-C25
Escobedo-Quiroz, R – P-A30
Esopenko, C – P-D9
Evans, JL – P-A29, P-A43, P-C42
Evans, TM – P-E5
Eviatar, Z – P-D42
Fanucci, K – P-D4
Fargier, R – P-D31
Faria, AV – P-C44
Farooqi-Shah, Y – P-D32
Faust, M – P-B31, P-E43
Federmeier, KD – P-A28
Fedorenko, E – P-E10,

F-P-E52
Felton, A – P-E2
Ferjan Ramirez, N – P-C34
Fernandino, L – S-C4
Fields, E – P-D4
Fiez, JA – P-B40
Fillmore, P – P-A4, P-B13, P-D19
Fiorentino, R – P-B26, P-C1,
P-C5, P-E32, P-E37
Flinker, A – P-B3
Florio, E – P-A47
Flowers, D-L – P-C15
Flowers, LD – P-E5
Floyd, B – P-A48
Flynn, J – P-B12
Fonteneau, E – P-E25
Frak, V – P-D46
Franca, AI – P-E48, P-D36
Freynik, S – P-A7
Fridriksson, J – P-A48,
P-D19
Friederici, AD – P-A26,
S-D1
Friedman, RB – S-C2
Friedmann, N – P-E17,
P-E20
Friedrich, CK – P-A25,
P-B24
Frishkoff, G – P-E36
Frost, S – P-A46
Fruchter, J – P-B34
Fuuki, N – P-E12
Fushe, A – P-E28
Gabriele, A – P-C1
Gabriel, J – P-B33
Gage, N – P-B13
Gagliardi, M – P-D8
Galantucci, S – P-C22, P-E1
Gandolfi, M – P-A47
Gangopadhyay, I – P-D30
Ganushchak, LY – P-C49
Garagnani, M – S-D3
Garmsey, SM – P-D21, P-E26
Garrido-Nag, K – P-B11
Garrod, SC – P-D28
Geisler, MW – P-A5
Gelfand, M – P-C45
Gendreau, A – P-C23
Genesee, F – P-D26
Genoir, S – P-D7, P-C31

Gerometta, J – P-B11
Gervain, J – P-B14, P-B27
Gesierich, B – P-C22, P-E1
Gesualdi, AR – P-D36,
P-E48
Ghosh, SS – P-A37
Gitterman, M – P-B28
Goldhahn, D – P-A26
Goldstein, A – P-C11
Gomes, JN – P-D36, P-E48
Gómez-López, M – P-A15
Gordon, B – P-C28, P-D24,
P-D30, P-D48
Gordon, P – P-E46
Gordon, RL – P-B23
Gorno-Tempini, ML – P-C2,
P-E21
Gould, L – P-D9
Gow, D – S-B1, P-E44
Grabski, K – P-B8
Gracco VL – P-A46, P-B5,
P-B8, P-B9
Grainger, J – P-B33
Granfort, A – P-D4
Grande, M – P-C24
Grainger, R – P-A1
Graziano, KM – P-E34
Griffiths, TD – P-A21
Grimaldi, M – P-E38
Groh, J – P-A26
Gross, RG – P-C38
Gross, WL – P-E36
Grossman, M – P-A14,
P-A42, P-A45, P-C35,
P-C38, P-D40, P-D52,
P-E4
Guasti, MT – P-C17
Guenther, FH – P-A37
Gunter, TC – P-A32
Guo, Q – P-D41
Haarmann, H – P-A7, P-C14
Habel, U – P-D34
Hagler, DJ – P-E45
Hagoort, P – S-C1, P-B49,
P-C49, P-D11, P-E23
Halai, A – P-E33
Haley, KL – P-A38
Halgren, E – P-B45, P-C34,
P-D47, P-E45
Hamalainen, MS – P-D4,
P-B45

Harvey, D – P-E3
Harvey, P – P-B29
Hattrak, M – P-C34
Hauk, O – P-D39
Hauser, P – P-A34
Hawelka, S – P-C21
He, C – P-D41
He, Y – P-C16, P-E29, P-E50
Heath, S – P-A39, P-A49
Heim, S – P-B1, P-C24,
P-D34
Henry, ML – P-C22, P-E1
Henry, RG – P-C22
Herdt, W – P-B26
Hernandez, AE – P-C2
Hershcovitch, L – P-C45
Hestvik, A – P-E15, P-E16,
P-A8
Hickok, G – P-A11, P-A3,
P-A31, P-A4, P-B17, P-B4,
P-B7, P-E24, P-C32,
P-C47, P-D1
Hillis, A – P-A44, P-C44
Hiner, B – S-C4
Hirshorn, E – P-A34
Hjaltason, H – P-D19
Hogan, JS – P-B47
Hogstrom, LJ – P-D33
Holcomb, P – P-D4
Holcomb, PH – P-B33
Holcomb, PJ – P-C4
Holland, A – P-A48
Holland, R – P-C39
Hoppfnger, J – P-E46
Hornickel, J – P-A30
Houde, JF – P-B10, P-B6
Hsich, I – P-A4
Huang, HW – P-B35
Huang, Y – P-E46
Hubbard, HJ – P-A48
Hudspheth, S – P-A48
Humphreys, G – P-C31,
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humphries, CJ</td>
<td>P-E36</td>
</tr>
<tr>
<td>Hunt III, L</td>
<td>P-E32</td>
</tr>
<tr>
<td>Hutzler, F</td>
<td>P-C21</td>
</tr>
<tr>
<td>Hwang, S-O</td>
<td>P-C29</td>
</tr>
<tr>
<td>Hyunn, J</td>
<td>P-E21</td>
</tr>
<tr>
<td>Idaardi, WJ</td>
<td>P-C29, P-B21</td>
</tr>
<tr>
<td>Iijima, K</td>
<td>P-E11</td>
</tr>
<tr>
<td>Imbush, T</td>
<td>P-E22</td>
</tr>
<tr>
<td>Isenberg, A</td>
<td>P-B13</td>
</tr>
<tr>
<td>Isenberg, AL</td>
<td>P-B7, P-C32, P-D1</td>
</tr>
<tr>
<td>Iverson, P</td>
<td>P-B32</td>
</tr>
<tr>
<td>Jacks, A</td>
<td>P-A38</td>
</tr>
<tr>
<td>Jackson, A</td>
<td>P-A27</td>
</tr>
<tr>
<td>Jalava, A</td>
<td>P-B42</td>
</tr>
<tr>
<td>Jenkins III, J</td>
<td>P-B21</td>
</tr>
<tr>
<td>Jessop, R</td>
<td>P-C26</td>
</tr>
<tr>
<td>Jiang, X</td>
<td>P-B50, P-E37, P-E40, P-E41</td>
</tr>
<tr>
<td>Johnson, K</td>
<td>P-C46</td>
</tr>
<tr>
<td>Jongman, A</td>
<td>P-B26</td>
</tr>
<tr>
<td>Jordan, D</td>
<td>P-B23</td>
</tr>
<tr>
<td>Jouen, A-L</td>
<td>P-D5</td>
</tr>
<tr>
<td>Kaftery, A</td>
<td>P-D42</td>
</tr>
<tr>
<td>Kaiser, R</td>
<td>S-D2</td>
</tr>
<tr>
<td>Kanayama, N</td>
<td>P-D26</td>
</tr>
<tr>
<td>Kannampuzha, J</td>
<td>P-B1</td>
</tr>
<tr>
<td>Kanwisher, N</td>
<td>P-E10, P-E52</td>
</tr>
<tr>
<td>Karuza, EA</td>
<td>S-A2</td>
</tr>
<tr>
<td>Karuvis, V</td>
<td>P-A7, P-C14</td>
</tr>
<tr>
<td>Kästner, L</td>
<td>P-C33</td>
</tr>
<tr>
<td>Kauschke, C</td>
<td>P-A12</td>
</tr>
<tr>
<td>Kawabata Duncan, KJ</td>
<td>P-B36, P-B47</td>
</tr>
<tr>
<td>Kelly, SD</td>
<td>P-A32</td>
</tr>
<tr>
<td>Kempen, G</td>
<td>P-D11</td>
</tr>
<tr>
<td>Kere, J</td>
<td>P-A22</td>
</tr>
<tr>
<td>Kherif, F</td>
<td>P-B38</td>
</tr>
<tr>
<td>Kielar, A</td>
<td>P-B37, P-E19</td>
</tr>
<tr>
<td>Kim, D-S</td>
<td>P-E21</td>
</tr>
<tr>
<td>Kim, JJ</td>
<td>P-A5</td>
</tr>
<tr>
<td>King, KE</td>
<td>P-C2</td>
</tr>
<tr>
<td>Kircher, T</td>
<td>P-A12, P-A33</td>
</tr>
<tr>
<td>Kjartansson, O</td>
<td>P-D19</td>
</tr>
<tr>
<td>Klein, D</td>
<td>P-B30</td>
</tr>
<tr>
<td>Knight, RT</td>
<td>P-A18, P-B3</td>
</tr>
<tr>
<td>Kort, N</td>
<td>P-B10</td>
</tr>
<tr>
<td>Koun, E</td>
<td>S-B3</td>
</tr>
<tr>
<td>Kovacevic, S</td>
<td>P-D47</td>
</tr>
<tr>
<td>Krach, S</td>
<td>P-A12</td>
</tr>
<tr>
<td>Kramer, J</td>
<td>P-E1</td>
</tr>
<tr>
<td>Kraus, N</td>
<td>P-A16, P-A17, P-A30, P-B15, P-B16</td>
</tr>
<tr>
<td>Krishna, S</td>
<td>P-C27</td>
</tr>
<tr>
<td>Krizman, J</td>
<td>P-B16</td>
</tr>
<tr>
<td>Kröger, BJ</td>
<td>P-B1</td>
</tr>
<tr>
<td>Kuhl, PK</td>
<td>P-E9</td>
</tr>
<tr>
<td>Kuhlmann, N</td>
<td>P-D9</td>
</tr>
<tr>
<td>Kuja, J</td>
<td>P-B42, P-C48</td>
</tr>
<tr>
<td>Kuperberg, G</td>
<td>P-B45, P-D4</td>
</tr>
<tr>
<td>Kurban, E</td>
<td>P-E16</td>
</tr>
<tr>
<td>Laaksonen, H</td>
<td>P-B42</td>
</tr>
<tr>
<td>Lage, AC</td>
<td>P-E48</td>
</tr>
<tr>
<td>Lahue, S</td>
<td>P-C37</td>
</tr>
<tr>
<td>Laka, I</td>
<td>P-E14</td>
</tr>
<tr>
<td>Lambon Ralph, MA</td>
<td>P-D2</td>
</tr>
<tr>
<td>Langdon, C</td>
<td>P-C29</td>
</tr>
<tr>
<td>Lau, E</td>
<td>P-D4</td>
</tr>
<tr>
<td>Law, S-P</td>
<td>P-B44, P-D14</td>
</tr>
<tr>
<td>Lawyer, L</td>
<td>P-A34, P-B22</td>
</tr>
<tr>
<td>Ledoux, K</td>
<td>P-D24, P-D30</td>
</tr>
<tr>
<td>Lee, CY</td>
<td>P-B35</td>
</tr>
<tr>
<td>Lee, E-K</td>
<td>P-E26</td>
</tr>
<tr>
<td>Lee, J</td>
<td>P-D12, P-D37</td>
</tr>
<tr>
<td>Lee, R-H</td>
<td>P-B44</td>
</tr>
<tr>
<td>Lee, Y-S</td>
<td>P-A1</td>
</tr>
<tr>
<td>Leech, R</td>
<td>P-B32, P-C27</td>
</tr>
<tr>
<td>Leff, A</td>
<td>P-A20, P-B48, P-A21, P-C39</td>
</tr>
<tr>
<td>Leger, G</td>
<td>P-C43</td>
</tr>
<tr>
<td>Leib, A</td>
<td>P-D42</td>
</tr>
<tr>
<td>Leiken, K</td>
<td>P-D17</td>
</tr>
<tr>
<td>Leinonen, E</td>
<td>P-A22</td>
</tr>
<tr>
<td>Lenhardt, M</td>
<td>S-A1</td>
</tr>
<tr>
<td>Leonard, CM</td>
<td>P-E2</td>
</tr>
<tr>
<td>Leonard, M</td>
<td>P-C34</td>
</tr>
<tr>
<td>Leonard, MK</td>
<td>P-E45</td>
</tr>
<tr>
<td>Leshinskaya, A</td>
<td>P-D51</td>
</tr>
<tr>
<td>Levita, L</td>
<td>P-C31</td>
</tr>
<tr>
<td>Lewis, G</td>
<td>P-A2</td>
</tr>
<tr>
<td>Li, J</td>
<td>P-C10</td>
</tr>
<tr>
<td>Li, N</td>
<td>P-C20</td>
</tr>
<tr>
<td>Li, P</td>
<td>P-D3</td>
</tr>
<tr>
<td>Li, Y</td>
<td>P-B50, P-E41</td>
</tr>
<tr>
<td>Libon, DJ</td>
<td>P-A45</td>
</tr>
<tr>
<td>Liégeois-Chauvel, C</td>
<td>P-D35</td>
</tr>
<tr>
<td>Liljeström, M</td>
<td>P-C48</td>
</tr>
<tr>
<td>Linzen, T</td>
<td>P-E17, P-E20</td>
</tr>
<tr>
<td>Litcofský, KA</td>
<td>P-C45</td>
</tr>
<tr>
<td>Liu, S</td>
<td>P-C25, P-C50, P-C52</td>
</tr>
<tr>
<td>Llorens, A</td>
<td>P-D35</td>
</tr>
<tr>
<td>Lloyd-Fox, S</td>
<td>P-C27</td>
</tr>
<tr>
<td>Lohmann, G</td>
<td>P-A26</td>
</tr>
<tr>
<td>López-Pérez, J</td>
<td>P-C19</td>
</tr>
<tr>
<td>López-Tinajero, A</td>
<td>P-A15</td>
</tr>
<tr>
<td>Lorusso, ML</td>
<td>P-C17</td>
</tr>
<tr>
<td>Loughlin, E</td>
<td>P-C28</td>
</tr>
<tr>
<td>Lu, Z</td>
<td>P-B39</td>
</tr>
<tr>
<td>Lukes, LT</td>
<td>P-C37</td>
</tr>
<tr>
<td>Lum, JAG</td>
<td>P-C51</td>
</tr>
<tr>
<td>Luo, Y</td>
<td>P-B25</td>
</tr>
<tr>
<td>MacDonald, A</td>
<td>P-A49</td>
</tr>
<tr>
<td>MacDonald, AD</td>
<td>P-A39</td>
</tr>
<tr>
<td>Mack, J</td>
<td>P-B37</td>
</tr>
<tr>
<td>MacSweeney, M</td>
<td>P-B38</td>
</tr>
<tr>
<td>Maddern, C</td>
<td>P-D5</td>
</tr>
<tr>
<td>Maddlox, CD</td>
<td>P-A3</td>
</tr>
<tr>
<td>Magne, C</td>
<td>P-B23</td>
</tr>
<tr>
<td>Magnon, G</td>
<td>P-D44</td>
</tr>
<tr>
<td>Magnusdottr, S</td>
<td>P-D19</td>
</tr>
<tr>
<td>Magon, S</td>
<td>P-A47</td>
</tr>
<tr>
<td>Maguire, M</td>
<td>P-D44</td>
</tr>
<tr>
<td>Malaiya, E</td>
<td>P-E7</td>
</tr>
<tr>
<td>Mar, RA</td>
<td>P-D50</td>
</tr>
<tr>
<td>Marantz, A</td>
<td>P-A2, P-B34</td>
</tr>
<tr>
<td>Marri, V</td>
<td>P-B16</td>
</tr>
<tr>
<td>Marinkovic, K</td>
<td>P-D47</td>
</tr>
<tr>
<td>Markus, A</td>
<td>P-D42</td>
</tr>
<tr>
<td>Marslen-Wilson, W</td>
<td>P-E25</td>
</tr>
<tr>
<td>Martin, R</td>
<td>P-A35</td>
</tr>
<tr>
<td>Matchin, W</td>
<td>P-B4</td>
</tr>
<tr>
<td>Mathur, P</td>
<td>P-C29</td>
</tr>
<tr>
<td>Max, L</td>
<td>P-A46</td>
</tr>
<tr>
<td>May, L</td>
<td>P-B14</td>
</tr>
<tr>
<td>Mayberry, R</td>
<td>P-C34</td>
</tr>
<tr>
<td>Mc Ardle, J</td>
<td>P-E51</td>
</tr>
<tr>
<td>McDermott, J</td>
<td>P-E10</td>
</tr>
<tr>
<td>McDermott, JH</td>
<td>P-A23</td>
</tr>
<tr>
<td>McGettigan, C</td>
<td>P-A51, P-C26</td>
</tr>
<tr>
<td>McMahon, K</td>
<td>P-A49, P-D25</td>
</tr>
<tr>
<td>McMahon, KL</td>
<td>P-A39, P-C46</td>
</tr>
<tr>
<td>McMillan, C</td>
<td>P-D52, P-E4</td>
</tr>
<tr>
<td>McMillan, CT</td>
<td>P-A42, P-A45</td>
</tr>
<tr>
<td>Medvedev, AV</td>
<td>S-C2</td>
</tr>
<tr>
<td>Mei, L</td>
<td>P-B39</td>
</tr>
<tr>
<td>Mellem, MS</td>
<td>S-C2</td>
</tr>
<tr>
<td>Meltzer-Assher, A</td>
<td>P-B37</td>
</tr>
<tr>
<td>Mencel, E</td>
<td>P-A46</td>
</tr>
<tr>
<td>Mendoza, M</td>
<td>P-A34</td>
</tr>
<tr>
<td>Menenti, L</td>
<td>P-D28</td>
</tr>
<tr>
<td>Mercure, E</td>
<td>P-C27</td>
</tr>
<tr>
<td>Mesgarani, N</td>
<td>S-A4</td>
</tr>
<tr>
<td>Miceli G</td>
<td>P-A11, P-A47</td>
</tr>
<tr>
<td>Midgley, KJ</td>
<td>P-C4</td>
</tr>
<tr>
<td>Miller, BL</td>
<td>P-C22, P-E1</td>
</tr>
<tr>
<td>Miller, E</td>
<td>P-E27</td>
</tr>
<tr>
<td>Minai, U</td>
<td>P-C5, P-E32</td>
</tr>
<tr>
<td>Miozzo, M</td>
<td>P-C46</td>
</tr>
<tr>
<td>Mirmann, D</td>
<td>P-E34</td>
</tr>
<tr>
<td>Mitchell, T</td>
<td>P-E28</td>
</tr>
<tr>
<td>Mohn, B</td>
<td>P-D39</td>
</tr>
<tr>
<td>Molinario, N</td>
<td>P-E18</td>
</tr>
<tr>
<td>Molnar, M</td>
<td>P-B27</td>
</tr>
<tr>
<td>Monahan, N</td>
<td>P-E18</td>
</tr>
<tr>
<td>Moore, MW</td>
<td>P-B40</td>
</tr>
<tr>
<td>Moore, P</td>
<td>P-A45, P-C35</td>
</tr>
<tr>
<td>Morgan, B</td>
<td>P-C35, P-C38</td>
</tr>
<tr>
<td>Mori, S</td>
<td>P-C44</td>
</tr>
<tr>
<td>Morita, K</td>
<td>P-B47</td>
</tr>
<tr>
<td>Moseley, E</td>
<td>P-D25, P-D49</td>
</tr>
<tr>
<td>Moseley, RL</td>
<td>P-D39</td>
</tr>
<tr>
<td>Muehlhaus, J</td>
<td>P-D34</td>
</tr>
<tr>
<td>Mufutuler, LT</td>
<td>P-A4</td>
</tr>
<tr>
<td>Mukherjee, P</td>
<td>P-C37</td>
</tr>
<tr>
<td>Mummata, Y</td>
<td>S-D2</td>
</tr>
<tr>
<td>Muñoz, S</td>
<td>P-C21</td>
</tr>
<tr>
<td>Nagarajan, SS</td>
<td>P-B10, P-B6</td>
</tr>
<tr>
<td>Nagels, A</td>
<td>P-A12, P-A33, S-B4</td>
</tr>
<tr>
<td>Naito-Billen, Y</td>
<td>P-C5</td>
</tr>
<tr>
<td>Nakano, H</td>
<td>P-D26</td>
</tr>
<tr>
<td>Napoliettolo, E</td>
<td>P-C15, P-E5</td>
</tr>
<tr>
<td>Nasredinne, Z</td>
<td>P-C43</td>
</tr>
<tr>
<td>Nath, A</td>
<td>P-A35, P-B20</td>
</tr>
<tr>
<td>Nazir, T</td>
<td>P-D46</td>
</tr>
<tr>
<td>Nazir, TA</td>
<td>P-D31</td>
</tr>
<tr>
<td>Neville, H</td>
<td>P-D10, P-D22</td>
</tr>
<tr>
<td>Newman, S</td>
<td>P-E7</td>
</tr>
<tr>
<td>Ng, S</td>
<td>P-C6</td>
</tr>
<tr>
<td>Nickels, L</td>
<td>P-A39, P-A49</td>
</tr>
<tr>
<td>Niefind, F</td>
<td>P-E49</td>
</tr>
<tr>
<td>Nikelski, J</td>
<td>P-C43</td>
</tr>
<tr>
<td>Niziolek, C</td>
<td>P-B6</td>
</tr>
</tbody>
</table>
NLC 2011 Program

Norman-Haignere, S – P-E10
Noveck, I – S-B3
O’Donnell, PJ – P-E47
O’Rourke, P – P-C14
Obermeier, C – P-A32
Obler, LK – P-E21
Olesjer, J – P-B52
O’Grady, J – P-C28
Ohta, S – P-E12
Okada, K – P-A3, P-A4, P-D1
Oladapo, F – P-C31
Olulade, O – P-C15
Oostenveld R – S-C1
Orfanidou, E – P-C33
Osann, K – P-B13
Oshima-Takane, Y – P-D26
Osthus, P – P-A7
Overath, T – P-A23
Page, D – P-C51
Pakulak, E – P-D22
Palatucci, M – P-E28
Pallier, C – P-D5
Pannekamp, A – S-A3
Papinutto, N – P-E41
Parker Jones, O – P-B36
Parker, G – P-E33
Parker, GJM – P-D2
Parkes, L – P-E33
Pasley, BN – P-A18
Pat, S – P-E9
Patael, S – P-E43
Paulignan, Y – P-D31, P-D46
Peelle, J – P-D52
Peelle, JE – P-A13, P-A14
Pekar, J – P-D27
Peleg, O – P-D42
Pelster, M – P-C45
Pendl, S – P-E36
Penny, W – P-A20, P-A21, P-B48
Perego, P – P-C17
Perkell, JS – P-A37
Perry, D – P-C36
Pesaran, B – P-A52
Pesciarelli, F – P-E42
Pettersson, K-M – P-D11, P-B49
Pfeifer, G – P-C31
Pierce, LJ – P-D26
Pierpont, E1 – P-A40
Filon, R – P-C43
Pisupati, AS – P-D27
Floux, S – P-D31
Poeppel, D – P-A23, P-B21
Politzer-Ahles, S – P-E32, P-E37
Polse, L – P-A29, P-A43
Fomerleau, D – P-E28
Prado, J – S-B3
Price, A – P-D52
Price, C – P-A20, P-B48
Price, CJ – P-C39
Probst, S – P-C43
Pucci, C – P-C29
Pullman, MY – P-A40, P-A41
Pulvermüller, F – P-D39, P-D49, P-E39, S-D3
Qi, Z – P-D21
Qu, Z – P-E45
Race, D – P-A44, P-C44
Rahni, R – P-A5
Raizada, R – P-A1
Rascovsky, K – P-A45
Reboul, A – P-D31
Reese, K – P-D48
Rennavall, H – P-A22
Resta, D – P-E38
Revel, KP – P-A19
Richardson, H – P-C30
Riès, S – P-D35
Rivett, SL – P-D27
Rising, K – P-C23
Rizik-Baer, D – P-C25
Robles Aguirre, F – P-D20, P-A15
Rodríguez Camacho, M – P-D20
Rodríguez-Agudelo, Y – P-D20
Rogalsky, C – P-A31, P-E24
Rong, F – P-B7, P-C32
Rönnberg, J – P-C33
Rorden, C – P-D19
Rosenberg, L – P-D27
Roth, HL – P-A38
Rothlein, D – P-B41
Rudmer, N – P-C33
Rumyati, RI – P-E35
Ryan, M – P-D27
Ryder, J – P-C52
Saarinen, T – P-B42
Saberi, K – P-A4, P-B17, P-C32, P-B36, P-B47, P-E11
Sachdeva, R – S-B1
Sakai, KI – P-E12, P-E22
Salmela, E – P-A22
Salmelín, R – P-A22, P-B42, P-E28, P-C48
Sammler, D – P-A26
Sanders, LD – P-B19, P-C13
Sarty, G – P-D9
Sass, K – P-D34
Sato, M – P-B8
Saxe, R – P-C30
Schaadt, G – S-A3
Scharinger, M – P-B52
Schild, U – P-A25, P-B24
Schiller, NO – P-C46
Schlesewsky, M – S-B4, P-D45, P-E50
Schmidt, GL – P-E27
Schneider, E – P-B51
Schmunt, T – S-D4, P-E3
Schofield, T – P-A20
Schauf, J – P-A12
Schretlen, DJ – P-D48
Schubert, T – P-B43
Schuchard, J – P-E19
Schwarz, MF – P-D8
Scott, SK – P-A51, P-C26
Sebati, N – P-E39
Sherfey, JS – P-D47
Shetreet, E – P-E17, P-E20
Shi, B – P-C10
Shivapour, S – P-E24
Shook, A – P-B16
Shu, H – P-C10, P-C9
Sides, L – P-D44
Silva-Pereyra, J – P-D20
Simanova, I – S-C1
Simmonds, AJ – P-B32
Simon, JZ – P-A10, P-B21
Siyanova-Chanturia, A – P-E42
Sizemore, ML – P-A29, P-A43, P-E45
Skoe, E – P-A16, P-B15, P-B16
Smally, AA – P-A7
Small, SL – P-D29
Smans, N – P-A47
Smith, EE – P-A42
Snyder, H. R. – S-D2
Sohoğlu, E – P-A13
Soles, J – P-B30
Solomon, B – P-C52
Soto, M – P-D36, P-E48
Spangler, K – S-C4
Spence, M – P-B13
Spiro III, A – P-E21
Spitzer, E – P-B15
Spotorno, N – S-B3
Stefanatos, GA – P-A36
Stephan, K – P-A20
Stewart, RA – P-D27
Stib, MT – P-C23
Stockall, L – P-B34
Stöhr, A – P-E16
Strain, J – P-D6
Straube, B – P-A33
Stufflebeam, SM – P-B45
Su, IF – P-B44
Su, L – P-E25
Sudre, G – P-E28
Swaab, TY – P-E13
Swick, K – P-D3
Tagarelli, KM – P-A41
Tanigawa, N – P-A5
Tardiff, T – P-C10
Tartaglia, MC – P-C22

The Society for the Neurobiology of Language
Index

Teki, S – P-A21, P-B48
Temereanca, S – P-B45
Tessel, C – P-B11
Tessel, CA – P-B28
Thesen, T – P-A52
Tholen, N – P-C24
Thompson, A – P-A20
Thompson, CK – P-B37, P-E19
Thompson-Schill, SL – P-D23
Thorne, J – P-C28
Thothathiri, M – P-D8
Tiede, MK – P-A37
Titone, D – P-E6
Tivarus, ME – S-A2
Tomasoni, B – P-E35
Tomarkovicz, V – P-A31, P-E24
Tooley, KM – P-E13
Torres, C – P-C34, P-E45
Torres-Agustín, A – P-A15, P-D20
Travis, KE – P-E45
Trader, MJ – P-E13
Trébuchon-Da Fonseca, A – P-D35
Tremblay, P – P-B8
Troiani, V – P-A14
Trueswell, J – P-D23
Tsapikini, K – P-C44
Tune, S – P-D45
Turkelb, PE – P-A6
Turken, AU – P-C41
Turner, R – P-A26
Twomey, T – P-B36, P-B47
Ullman, MT – P-A40, P-A41, P-C45, P-C51
Umeda, K – P-B47
van Berkum, J – P-B49
van de Velde, A – P-C19
Van Der Henst, JB – S-B3
van der Meer, E – S-A3
van der Meij, M – P-C19
van Gerven M – S-C1
van Hees, S – P-A49
van Heuven, WJB – P-C18
Vannorsdall, TD – P-D48
Vartiainen, J – P-C48
Vazquez, D – P-E2
Venezia, J – P-A3
Venezia, JH – P-B17
Ventre-Dominey, J – P-D5
Vilha, M – P-A22
von Overheidt, AC – P-C24
Wagage, S – P-C52
Wali, E – P-B37
Walsh, E – P-C26
Wang, C – P-E51
Wang, S – P-C20
Wang, X – P-C16, P-C9, P-E29
Wang, YP – P-E9
Warrier, C – P-A30
Watanabe, D – P-A24
Waters, D – P-B38
Watkins, H – P-D3
Watkins, K – P-B30
Weber, K – P-B49
Weber-Fox, C – P-D13
Whebe, L – P-E28
Wei, T – S-D4
Weidner, R – P-C24
Weinberg, D – P-C35
Welbourne, S – P-E33
Wen, X – P-D41
Werker, JF – P-B14
Westerlund, M – P-E30
Whisman, M – S-D2
Whitehead, V – P-C43
Whitford, V – P-E6
Whitney, C – P-A12
Wicha, N – P-C6
Wicha, NYY – P-C3
Williams, D – P-A34
Wilson, C – S-B2
Wilson, SM – P-C22
Wilson, SM – P-C23
Wingfield, A – P-A14
Wingfield, C – P-E25
Wise, RJS – P-B32
Woll, B – P-B38, P-C33
Wolmetz, M – S-B2
Womack, K – P-D6
Wong, FCM – P-A16, P-A17
Woodhead, Z – P-B45
Woollams, AM – P-D2
Xie, S – P-C38
Xu, J – P-D43
Xu, X – P-E40
Xu, Y – P-A50, P-C25, P-C50, P-E51
Xue, G – P-B39
Yang, B – P-D37
Yang, F – P-C37
Yang, J – P-C8, P-C9, P-D3
Young, KM – P-D27
Yu, X – P-D14
Yu, YH – P-B11, P-B18
Zarate, JM – P-A23
Zawiszewski, A – P-E14
Zevin, J – P-A9, P-B29, P-C8
Zevin, JD – P-C9
Zhang, W – P-C20
Zhang, Y – P-C10
Zhou, X – P-B25, P-B50, P-E37, P-E40, P-E41
Zilles, K – S-D1
Zirnstein, M – P-E13
actiChamp and PyCorder
Take your neurophysiology research to the next level!

The new actiChamp all active amplifier, Brain Products’ first amplifier designed solely for research applications. The amplifier’s high sampling rate (up to 100 KHz for 32 channels – 50 kHz for 160 channels), its very wide hardware bandwidth, its smart and user-friendly design and its ease of use are just a few of its notable features.

This 24-bit battery-powered amplifier uses an intelligent plug-and-play concept to make it extremely easy to increase the number of channels from 32 up to 160 by adding individual modules of 32 channels each. Eight additional AUX inputs are integrated into the basic module of the amplifier, and can be used with a full range of biosignal sensors such as GSR, respiration, acceleration, temperature, blood pulse sensors and with bipolar sensors to measure EMG, EKG, EOG, etc.

PyCorder: Python based open source acquisition software free of charge!

PyCorder is a real open source acquisition program for setting up hardware and storing data based on the Python programming language. The PyCorder software offers users unlimited control of the running processes. Users can intervene at any point in the data acquisition step and configure the PyCorder according to their scientific requirements. The PyCorder not only allows the provided base modules to be modified, but also permits user-defined modules to be integrated depending on the given research application.

Please note: actiChamp and PyCorder are intended to be used for research applications only and are not sold, designed or intended to be used as medical devices as defined in EU Directive 93/42/EEC, nor are they intended to be used for other medical applications such as diagnosis or treatment of disease. The entire software is open source and the hardware is freely configurable. Brain Products shall not be liable for any use other than pure scientific and research applications. The actiChamp hardware has been tested and certified as per the relevant EMC and electrical safety standards. A non-medical CE certificate is available on request.

Superior Solutions for EEG & fMRI Applications

Brain Products is the Gold Standard in EEG & fMRI research with more than 250 Publications

- ERP, EEG/fMRI Applications
 - Language
 - Speech
 - Hearing
 - Reading

- Superior Solutions
 - Full Synchronized Recordings
 - MR Sensors – EMG, GSR, Acceleration
 - Real Time EEG Analysis
 - Easy Data Correction
 - Integrated with Eye Tracking

www.BrainVision.com
Introducing Springer Briefs in Neuroscience

A new way to publish from Springer

Springer is delighted to announce Springer Briefs, concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic.

Typical topics might include:

- A timely report of state-of-the-art analytical techniques
- A bridge between new research results published in journal articles and a contextual literature review
- A snapshot of a hot or emerging topic
- An in-depth case study or clinical example
- A presentation of core concepts that students must understand in order to make independent contributions
- Best practices or protocols to be followed
- A series of short case studies/debates highlighting a specific angle

Author benefits

- Briefs allow authors to present their ideas and readers to absorb them with minimal time investment
- Briefs will be published as part of Springer’s eBook collection, with millions of users worldwide, and will be available for individual print and electronic purchase.
- Briefs are characterized by fast, global electronic dissemination, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8-12 weeks after acceptance.
- Both solicited and unsolicited manuscripts are considered for publication in this series.
- Copyright remains in the author’s name.

For more information or to submit a manuscript to the Springer Briefs in Neuroscience series, please contact Simina Calin at simina.calin@springer.com